TgX BY TOPIC, A TEXNICIAN’S REFERENCE

VICTOR EIJKHOUT

DOCUMENT REVISION 1.5, 2019

Copyright © 1991-2013 Victor Eijkhout.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License”.

This document is based on the book TEX by Topic, copyright 1991-2019 Victor Eijkhout. This book
was printed in 1991 by Addison-Wesley UK, ISBN 0-201-56882-9, reprinted in 1993, pdf version
first made freely available in 2001.

Cover design (lulu.com version): Joanna K. Wozniak (jokwoz@gmail.com)

Victor Eijkhout — TEgX by Topic 1

Victor Eijkhout — TgX by Topic

Contents

License 15

Preface 21

1 The Structure of the TgX Processor 23
1.1 Four TgX processors 23

1.2 The input processor 24

1.2.1 Character input 24

1.2.2 Two-level input processing 24

1.3 The expansion processor 25

1.3.1 The process of expansion 25

1.3.2 Special cases: \expandafter, \noexpand, and \the 25
1.3.3 Braces in the expansion processor 26

1.4 The execution processor 26

1.5 The visual processor 27

1.6 Examples 28

1.6.1 Skipped spaces 28

1.6.2 Internal quantities and their representations 28
2 Category Codes and Internal States 29
2.1 Introduction 29

2.2 Initial processing 29

2.3 Category codes 30

2.4 From characters to tokens 32

2.5 The input processor as a finite state automaton 32
2.5.1 State N: new line 32

2.5.2 State S: skipping spaces 32

2.5.3 State M: middle of line 33

2.6 Accessing the full character set 33

2.7 Transitions between internal states 33
2.7.1 0: escape character 34

2.7.2 1-4,7-8, 11-13: non-blank characters 34
2.7.3 b5:end ofline 34

2.74 6:parameter 34

2.7.5 T:superscript 34

2.7.6 9:ignored character 35

2.7.7 10:space 35

2.7.8 14:comment 35

2.7.9 15:invalid 385

2.8 Letters and other characters 35

2.9
2.10
2.10.1
2.10.2
2.10.3
2.10.4
2.10.5
2.10.6
2.10.7
211
2111
2.11.2
2.11.3
2.12
2.12.1
2.12.2
2.12.3
2.13

3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.6
3.7
3.7.1
3.7.2

4.1

4.2

4.2.1
4.2.2
4.2.3
4.3

43.1
4.3.2
4.3.3
434
4.3.5

The \par token 36

Spaces 37

Skipped spaces 37

Optional spaces 37

Ignored and obeyed spaces 38

More ignored spaces 38

(space token) 39

Control space 39

‘39

More about line ends 40

Obeylines 40

Changing the \endlinechar 40

More remarks about the end-of-line character 41
More about the input processor 41

The input processor as a separate process 41
The input processor not as a separate process 42
Recursive invocation of the input processor 42
The @ convention 43

Characters 45

Character codes 45

Control sequences for characters 46

Denoting characters to be typeset: \char 46
Implicit character tokens: \1let 47

Accents 48

Testing characters 49

Uppercase and lowercase 50

Uppercase and lowercase codes 50

Uppercase and lowercase commands 50
Uppercase and lowercase forms of keywords 50
Creative use of \uppercase and \lowercase 51
Codes of a character 51

Converting tokens into character strings 51
Output of control sequences 52

Category codes of a \string 52

Fonts 53

Fonts 53

Font declaration 54

Fonts and tfm files 54

Querying the current font and font names 54
\nullfont 55

Font information 55

Font dimensions 55

Kerning 56

Italic correction 56

Ligatures 57

Boundary ligatures 57

Boxes 59

Victor Eijkhout — TEX by Topic

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
54
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.5
5.6
5.7
5.8
5.9
5.9.1
5.9.2
5.9.3
5.94
5.9.5
5.9.6
6

6.1
6.1.1
6.1.2
6.2
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.5
6.6
6.6.1
6.7

7

7.1
7.2
7.2.1

Boxes 60

Box registers 60

Allocation: \newbox 60

Usage: \setbox, \box, \copy 61
Testing: \ifvoid, \ifhbox, \ifvbox 61
The \lastbox 61

Natural dimensions of boxes 62
Dimensions of created horizontal boxes 62
Dimensions of created vertical boxes 62
Examples 63

More about box dimensions 64
Predetermined dimensions 64
Changes to box dimensions 65

Moving boxes around 65

Box dimensions and box placement 65
Boxes and negative glue 66

Overfull and underfull boxes 67
Opening and closing boxes 67
Unboxing 68

Text in boxes 69

Assorted remarks 70

Forgetting the \box 70

Special-purpose boxes 70

The height of a vertical box in horizontal mode
More subtleties with vertical boxes 70
Hanging the \lastbox back in the list 71
Dissecting paragraphs with \lastbox 72
Horizontal and Vertical Mode 73
Horizontal and vertical mode 73
Horizontal mode 73

Vertical mode 74

Horizontal and vertical commands 74
The internal modes 75

Restricted horizontal mode 75

Internal vertical mode 75

Boxes and modes 76

What box do you use in what mode? 76
What mode holds in what box? 76
Mode-dependent behaviour of boxes 76
Modes and glue 76

Migrating material 77

\vadjust 77

Testing modes 77

Numbers 79

Numbers and (number)s 79

Integers 79

Denotations: integers 80

Victor Eijkhout — TgX by Topic

70

7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.3
7.4
7.5
7.5.1
7.5.2
7.5.3
7.6
7.7
7.7.1
7.7.2

8.1

8.1.1
8.1.2
8.1.3
8.14
8.1.5
8.1.6
8.2

8.2.1
8.2.2
8.2.3
8.3

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9

9.1
9.1.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1

Denotations: characters

Internal integers

Internal integers: other codes of a character 82

(special integer)

Other internal quantities: coersion to integer 82

81

82

Trailing spaces 82

Numbers 82
Integer registers
Arithmetic 83

83

Arithmetic statements

Floating-point arithmetic 84

80

84

Fixed-point arithmetic 84
Number testing 84

Remarks 85

Character constants
Expanding too far / how far 85
Dimensions and Glue 87
Definition of (glue) and (dimen)
Definition of dimensions 88

Definition of glue

Conversion of (glue) to (dimen)

89

85

88

90

Registers for \dimen and \skip 90
Arithmetic: addition 90

Arithmetic: multiplication and division 91

More about dimensions 91
Units of measurement 91
Dimension testing 92
Defined dimensions 92

More about glue

92

Stretch and shrink 93

Glue setting 94
Badness 94

Glue and breaking 95

\kern 95
Glue and modes

The last glue item in a list: backspacing 96
Examples of backspacing 96

95

Glue in trace output 97
Rules and Leaders 99

Rules 99

Rule dimensions
Leaders 100
Rule leaders 101
Box leaders 102

100

Evenly spaced leaders

Assorted remarks
Rules and modes

103
103

102

Victor Eijkhout — TEX by Topic

9.3.2 Ending a paragraph with leaders 103
9.3.3 Leaders and box registers 103

9.3.4 Output in leader boxes 104

9.3.5 Box leaders in trace output 104

9.3.6 Leaders and shifted margins 104

10 Grouping 105

10.1 The grouping mechanism 105

10.2 Local and global assignments 106

10.3 Group delimiters 106

10.4 More about braces 107

10.4.1 Brace counters 107

10.4.2 The brace as a token 108

10.4.3 Open and closing brace control symbols 108
11 Macros 109

11.1 Introduction 109

11.2 Layout of a macro definition 110

11.3 Prefixes 110

114 The definition type 111

11.5 The parameter text 111

11.5.1 TUndelimited parameters 112

11.5.2 Delimited parameters 112

11.5.3 Examples with delimited arguments 113
11.5.4 Empty arguments 114

11.5.5 The macro parameter character 114
11.5.6 Brace delimiting 115

11.6 Construction of control sequences 115
11.7 Token assignments by \let and \futurelet 116
11.7.1 \let 116

11.7.2 \futurelet 117

11.8 Assorted remarks 117

11.8.1 Active characters 117

11.8.2 Macros versus primitives 118

11.8.3 Tail recursion and the \loop macro 118
11.9 Macro techniques 119

11.9.1 Unknown number of arguments 119
11.9.2 Examining the argument 120

11.9.3 Optional macro parameters with \futurelet 121
11.9.4 Two-step macros 121

11.9.5 A comment environment 122

12 Expansion 125

12.1 Introduction 125

12.2 Ordinary expansion 125

12.3 Reversing expansion order 126

12.3.1 One step expansion: \expandafter 126
12.3.2 Total expansion: \edef 127

12.3.3 \afterassignment 127

12.3.4 \aftergroup 128

Victor Eijkhout — TgX by Topic

12.4
12.4.1
12.4.2
12.5
12.5.1
12.5.2
12.5.3
1254
12.6
12.6.1
12.6.2
12.6.3
12.6.4
12.6.5
12.6.6
12.6.7
12.6.8
12.6.9
13
13.1
13.2
13.2.1
13.2.2
13.2.3
13.3
13.4
13.5
13.5.1
13.5.2
13.5.3
13.54
13.5.5
13.6
13.7
13.8
13.8.1
13.8.2
13.8.3
13.8.4
13.8.5
13.8.6
13.8.7
14
14.1
14.2
14.3
144

Preventing expansion 129

\noexpand 129

\noexpand and active characters 129
\relax 130

\relax and \csname 130

Preventing expansion with \relax 131
TEX inserts a \relax 131

The value of non-macros; \the 132
Examples 132

Expanding after 132

Defining inside an \edef 133

Expansion and \write 134

Controlled expansion inside an \edef 135
Multiple prevention of expansion 135
More examples with \relax 136
Example: category code saving and restoring 136
Combining \aftergroup and boxes 137
More expansion 138

Conditionals 139

The shape of conditionals 139

Character and control sequence tests 140
\if 140

\ifcat 140

\ifx 141

Mode tests 141

Numerical tests 142

Other tests 142

Dimension testing 142

Box tests 142

I/O tests 142

Case statement 142

Special tests 143

The \newif macro 143

Evaluation of conditionals 144

Assorted remarks 145

The test gobbles up tokens 145

The test wants to gobble up the \else or \fi 145
Macros and conditionals; the use of \expandafter 146
Incorrect matching 147

Conditionals and grouping 147

A trick 148

More examples of expansion in conditionals 148
Token Lists 151

Token lists 151

Use of token lists 151

(token parameter) 152

Token list registers 152

Victor Eijkhout — TEX by Topic

14.5
14.5.1
14.5.2
15
15.1
15.2
15.3
154
16
16.1
16.2
16.3
16.3.1
16.3.2
16.4
16.4.1
16.4.2
16.4.3
16.4.4
17
17.1
17.1.1
17.1.2
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
18
18.1
18.2
18.2.1
18.2.2
18.3
18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
19
19.1
19.1.1
19.1.2
19.1.3

Examples 153

Operations on token lists: stack macros 153
Executing token lists 154

Baseline Distances 155

Interline glue 155

The perceived depth of boxes 157
Terminology 158

Additional remarks 158

Paragraph Start 159

When does a paragraph start 159

What happens when a paragraph starts 160
Assorted remarks 160

Starting a paragraph with a box 160
Starting a paragraph with a group 160
Examples 161

Stretchable indentation 161

Suppressing indentation 161

An indentation scheme 161

A paragraph skip scheme 162

Paragraph End 165

The way paragraphs end 165

The \par command and the \par token 165
Paragraph filling: \parfillskip 166
Assorted remarks 166

Ending a paragraph and a group at the same time 166
Ending a paragraph with \hfill\break 167
Ending a paragraph with a rule 167

No page breaks in between paragraphs 167
Finite \parfillskip 167

A precaution for paragraphs that do not indent 168
Paragraph Shape 169

The width of text lines 170

Shape parameters 170

Hanging indentation 170

General paragraph shapes: \parshape 171
Assorted remarks 171

Centred last lines 171

Indenting into the margin 172

Hang a paragraph from an object 172
Another approach to hanging indentation 173
Hanging indentation versus \leftskip shifting 173
More examples 174

Line Breaking 175

Paragraph break cost calculation 176
Badness 176

Penalties and other break locations 177
Demerits 177

Victor Eijkhout — TgX by Topic

19.1.4
19.1.5
19.2
19.2.1
19.2.2
19.3
19.3.1
19.3.2
194
194.1
19.4.2
19.4.3
19.4.4
19.5
20
20.1
20.2
20.3
20.4
20.5
20.5.1
20.5.2
20.5.3
20.5.4
21
211
21.2
21.2.1
21.2.2
21.2.3
21.2.4
21.3
214
22
22.1
22.2
22.3
22.4
22.4.1
22.4.2
22.4.3
22.5
22.5.1
22.5.2
23
23.1
23.2

10

The number of lines of a paragraph 178

Between the lines 178

The process of breaking 178

Three passes 179

Tolerance values 179

Discretionaries 179

Hyphens and discretionaries 179

Examples of discretionaries 180

Hyphenation 181

Start of a word 181

End of a word 181

TEX2 versus TEX3 182

Patterns and exceptions 182

Switching hyphenation patterns 182

Spacing 185

Introduction 185

Automatic interword space 185

User interword space 186

Control space and tie 187

More on the space factor 188

Space factor assignments 188

Punctuation 188

Other non-letters 189

Other influences on the space factor 189

Characters in Math Mode 191

Mathematical characters 192

Delimiters 192

Delimiter codes 193

Explicit \delimiter commands 193

Finding a delimiter; successors 193

\big, \Big, \bigg, and \Bigg delimiter macros 194
Radicals 194

Math accents 195

Fonts in Formulas 197

Determining the font of a character in math mode 197
Initial family settings 198

Family definition 198

Some specific font changes 198

Change the font of ordinary characters and uppercase Greek 198
Change uppercase Greek independent of text font 199
Change the font of lowercase Greek and mathematical symbols 199
Assorted remarks 199

New fonts in formulas 199

Evaluating the families 200

Mathematics Typesetting 201

Math modes 202

Styles in math mode 202

Victor Eijkhout — TEX by Topic

23.2.1
23.2.2
23.3
23.4
23.5
23.6
23.6.1
23.6.2
23.6.3
23.7
23.8
23.9
23.10
23.10.1
23.10.2
23.10.3
24
24.1
24.2
24.3
244
24.5
24.6
24.6.1
24.6.2
24.7
25
25.1
25.2
25621
25.2.2
25.2.3
2524
25.3
25.3.1
25.3.2
25.3.3
25.3.4
25.4
25.4.1
25.4.2
25.4.3
2544
25.4.5
25.5
26
26.1

Superscripts and subscripts 203

Choice of styles 203

Classes of mathematical objects 204
Large operators and their limits 204
Vertical centring: \vcenter 205
Mathematical spacing: mu glue 205
Classification of mu glue 206

Muskip registers 206

Other spaces in math mode 207
Generalized fractions 207

Underlining, overlining 208

Line breaking in math formulas 208
Font dimensions of families 2 and 3 208
Symbol font attributes 208

Extension font attributes 209

Example: subscript lowering 210
Display Math 211

Displays 211

Displays in paragraphs 212

Vertical material around displays 212
Glue setting of the display math list 213
Centring the display formula: displacement 213
Equation numbers 214

Ordinary equation numbers 214

The equation number on a separate line 214
Non-centred displays 214

Alignment 217

Introduction 217

Horizontal and vertical alignment 217
Horizontal alignments: \halign 218
Vertical alignments: \valign 218
Material between the lines: \noalign 218
Size of the alignment 219

The preamble 219

Infinite preambles 219

Brace counting in preambles 220
Expansion in the preamble 220

\tabskip 220

The alignment 221

Reading an entry 221

Alternate specifications: \omit 221
Spanning across multiple columns: \span 222
Rules in alignments 222

End of a line: \cr and \crcr 223
Example: math alignments 224

Page Shape 225

The reference point for global positioning 225

Victor Eijkhout — TgX by Topic

11

26.2
26.3
27
271
27.2
27.3
27.4
2741
27.4.2
27.4.3
27.5
27.6
27.6.1
27.6.2
27.6.3
28
28.1
28.2
28.3
28.4
28.4.1
28.4.2
28.4.3
28.4.4
28.4.5
28.4.6
29
29.1
29.2
29.3
294
29.5
29.6
30
30.1
30.2
30.2.1
30.2.2
30.2.3
30.3
30.4
30.4.1
30.4.2
30.4.3
30.4.4
30.4.5
30.4.6

12

\topskip 225
Page height and depth 226
Page Breaking 227

The current page and the recent contributions 228

Activating the page builder 228

Page length bookkeeping 228
Breakpoints 229

Possible breakpoints 229

Breakpoint penalties 229

Breakpoint computation 230

\vsplit 231

Examples of page breaking 232

Filling up a page 232

Determining the breakpoint 232

The page builder after a paragraph 233
Output Routines 235

The \output token list 235

Output and \box255 236

Marks 236

Assorted remarks 238

Hazards in non-trivial output routines 238
Page numbering 238

Headlines and footlines in plain TEX 238
Example: no widow lines 238

Example: no indentation top of page 239
More examples of output routines 240
Insertions 241

Insertion items 241

Insertion class declaration 242
Insertion parameters 242

Moving insertion items from the contributions list 243

Insertions in the output routine 244

Plain TgX insertions 244

File Input and Output 245

Including files: \input and \endinput 245
File /O 246

Opening and closing streams 246

Input with \read 246

Output with \write 247

Whatsits 247

Assorted remarks 248

Inspecting input 248

Testing for existence of files 248

Timing problems 248

\message versus \immediate\writel6 248
Write inside a vertical box 249

Expansion and spaces in \write and \message

249

Victor Eijkhout — TEX by Topic

31 Allocation 251

31.1 Allocation commands 251

31.1.1 \count, \dimen, \skip, \muskip, \toks 252
31.1.2 \box, \fam, \write, \read, \insert 252
31.2 Ground rules for macro writers 252

32 Running TEX 255

32.1 Jobs 255

32.1.1 Start of the job 255

32.1.2 End of the job 256

32.1.3 The log file 256

32.2 Run modes 256

33 TEX and the Outside World 259

33.1 TEX, IniTgX, VirTgX 259

33.1.1 Formats: loading 259

33.1.2 Formats: dumping 260

33.1.3 Formats: preloading 260

33.1.4 The knowledge of IniTEX 260

33.1.5 Memory sizes of TgX and IniTEX 261
33.2 More about formats 261

33.2.1 Compatibility 261

33.2.2 Preloaded fonts 261

33.2.3 The plain format 262

33.2.4 The KIEX format 262

33.2.5 Mathematical formats 262

33.2.6 Other formats 262

33.3 The dvi file 263

33.3.1 The dvi file format 263

33.3.2 Page identification 263

33.3.3 Magnification 263

33.4 Specials 264

33.5 Time 264

33.6 Fonts 264

33.6.1 Font metrics 264

33.6.2 Virtual fonts 265

33.6.3 Font files 265

33.6.4 Computer Modern 266

33.7 TEX and web 266

33.8 The TgX Users Group 267

34 Tracing 269

34.1 Meaning and content: \show, \showthe, \meaning 270
34.2 Show boxes: \showbox, \tracingoutput 271
34.3 Global statistics 272

34.4 Execution tracing 273

35 Errors, Catastrophes, and Help 275
35.1 Error messages 275

35.2 Overflow errors 276

35.2.1 Bulffer size (500) 276

Victor Eijkhout — TgX by Topic 13

35.2.2
35.2.3
35.2.4
35.2.5
35.2.6
35.2.7
35.2.8
35.2.9
356.2.10
356.2.11
35.2.12
35.2.13
356.2.14
35.2.15
36

36.1
36.2
36.3
36.3.1
36.3.2
36.3.3
36.3.4
36.4

37

38

38.1
38.2
38.3
38.3.1
38.3.2
38.3.3
38.3.4
38.3.5
38.3.6
38.3.7
39

Exception dictionary (307) 276

Font memory (20,000) 276

Grouping levels 277

Hash size (2100) 277

Number of strings (3000) 277

Input stack size (200) 277

Main memory size (30,000) 277
Parameter stack size (60) 277

Pattern memory (8000) 278

Pattern memory ops per language 278
Pool size (32,000) 278

Save size (600) 278

Semantic nest size (40) 278

Text input levels (6) 278

The Grammar of TEX 279

Notations 279

Keywords 280

Specific grammatical terms 280

(equals) 280

(filler), (general text) 280

{} and (left brace)(right brace) 281
(math field) 281

Differences between TgX versions 2 and 3 281
Glossary of TEX Primitives 283

Tables 297

Character tables 298

Computer modern fonts 300

Plain TgX math symbols 305
Mathcharacter codes 305

Delimiter codes 306

(mathchardef tokens): ordinary symbols 307
(mathchardef tokens): large operators 308
(mathchardef tokens): binary operations 309
(mathchardef tokens): relations 310
\delimiter macros 311

Index 313

Bibliography 313

14

Victor Eijkhout — TEX by Topic

GNU Free Documentation License Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment "free” in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free soft-
ware needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the con-
ditions stated herein. The "Document”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as ”"you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The ”"Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

Victor Eijkhout — TEgX by Topic 15

A "Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount of text. A copy that is not
"Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary for-
mats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements”,
"Dedications”, ”Endorsements”, or "History”.) To "Preserve the Title” of such a section when you
modify the Document means that it remains a section "Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover

16 Victor Eijkhout — TgX by Topic

Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before re-
distributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in
the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission. B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement. C. State on the Title page the name of the
publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the
Document. E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices. F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice. H. Include an unaltered copy of this
License. 1. Preserve the section Entitled "History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence. J. Preserve the network location, if any,
given in the Document for public access to a Transparent copy of the Document, and likewise the

Victor Eijkhout — TEgX by Topic 17

network locations given in the Document for previous versions it was based on. These may be
placed in the "History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to
gives permission. K. For any section Entitled ”Acknowledgements” or "Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of
the Document, unaltered in their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles. M. Delete any section Entitled "Endorsements”. Such
a section may not be included in the Modified Version. N. Do not retitle any existing section to
be Entitled "Endorsements” or to conflict in title with any Invariant Section. O. Preserve any
Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled ’Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one pas-
sage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for the same cover, previ-
ously added by you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents, unmodified, and list them all
as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History” in the various original
documents, forming one section Entitled "History”; likewise combine any sections Entitled ”Ac-
knowledgements”, and any sections Entitled "Dedications”. You must delete all sections Entitled
“"Endorsements.”

6. COLLECTIONS OF DOCUMENTS

18 Victor Eijkhout — TgX by Topic

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a sin-
gle copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an "aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggre-
gate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original ver-
sions of those notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements”, "Dedications”, or "History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http:/www.gnu.org/copyleft/.

Victor Eijkhout — TEgX by Topic 19

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation.

20 Victor Eijkhout — TgX by Topic

Preface To the casual observer, TEX is not a state-of-the-art typesetting system. No flashy mul-
tilevel menus and interactive manipulation of text and graphics dazzle the onlooker. On a less
superficial level, however, TEX is a very sophisticated program, first of all because of the inge-
niousness of its built-in algorithms for such things as paragraph breaking and make-up of math-
ematical formulas, and second because of its almost complete programmability. The combination
of these factors makes it possible for TEX to realize almost every imaginable layout in a highly
automated fashion.

Unfortunately, it also means that TEX has an unusually large number of commands and param-
eters, and that programming TgX can be far from easy. Anyone wanting to program in TgX, and
maybe even the ordinary user, would seem to need two books: a tutorial that gives a first glimpse
of the many nuts and bolts of TEX, and after that a systematic, complete reference manual. This
book tries to fulfil the latter function. A TgXer who has already made a start (using any of a num-
ber of introductory books on the market) should be able to use this book indefinitely thereafter.

In this volume the universe of TEX is presented as about forty different subjects, each in a separate
chapter. Each chapter starts out with a list of control sequences relevant to the topic of that
chapter and proceeds to treat the theory of the topic. Most chapters conclude with remarks and
examples.

Globally, the chapters are ordered as follows. The chapters on basic mechanisms are first, the
chapters on text treatment and mathematics are next, and finally there are some chapters on
output and aspects of TEX’s connections to the outside world. The book also contains a glossary of
TEX commands, tables, and indexes by example, by control sequence, and by subject. The subject
index refers for most concepts to only one page, where most of the information on that topic can
be found, as well as references to the locations of related information.

This book does not treat any specific TEX macro package. Any parts of the plain format that are
treated are those parts that belong to the ‘core’ of plain TEX: they are also present in, for instance,
ETEX. Therefore, most remarks about the plain format are true for ETEX, as well as most other
formats. Putting it differently, if the text refers to the plain format, this should be taken as a
contrast to pure IniTEX, not to IATEX. By way of illustration, occasionally macros from plain TgX
are explained that do not belong to the core.

Acknowledgment

I am indebted to Barbara Beeton, Karl Berry, and Nico Poppelier, who read previous versions
of this book. Their comments helped to improve the presentation. Also I would like to thank
the participants of the discussion lists TEXhax, TEX-nl, and comp.text.tex. Their questions and
answers gave me much food for thought. Finally, any acknowledgement in a book about TgX ought
to include Donald Knuth for inventing TgX in the first place. This book is no exception.

Victor Eijkhout

Urbana, Illinois, August 1991
Knoxville, Tennessee, May 2001
Austin, Texas, December 2013

Victor Eijkhout — TgX by Topic 21

22

Victor Eijkhout — TgX by Topic

Chapter 1

The Structure of the TEX Processor

This book treats the various aspects of TEX in chapters that are concerned with relatively small,
well-delineated, topics. In this chapter, therefore, a global picture of the way TEX operates will be
given. Of necessity, many details will be omitted here, but all of these are treated in later chapters.
On the other hand, the few examples given in this chapter will be repeated in the appropriate
places later on; they are included here to make this chapter self-contained.

1.1 Four TEX processors

The way TgX processes its input can be viewed as happening on four levels. One might say that
the TEX processor is split into four separate units, each one accepting the output of the previous
stage, and delivering the input for the next stage. The input of the first stage is then the .tex
input file; the output of the last stage is a .dvi file.

For many purposes it is most convenient, and most insightful, to consider these four levels of
processing as happening after one another, each one accepting the completed output of the previ-
ous level. In reality this is not true: all levels are simultaneously active, and there is interaction
between them.

The four levels are (corresponding roughly to the ‘eyes’, ‘mouth’, ‘stomach’, and ‘bowels’ respec-
tively in Knuth’s original terminology) as follows.

1. The input processor. This is the piece of TEX that accepts input lines from the file system
of whatever computer TgX runs on, and turns them into tokens. Tokens are the internal
objects of TEX: there are character tokens that constitute the typeset text, and control
sequence tokens that are commands to be processed by the next two levels.

2. The expansion processor. Some but not all of the tokens generated in the first level —
macros, conditionals, and a number of primitive TEX commands — are subject to expan-
sion. Expansion is the process that replaces some (sequences of) tokens by other (or no)
tokens.

3. The execution processor. Control sequences that are not expandable are executable, and
this execution takes place on the third level of the TEX processor.

One part of the activity here concerns changes to TEX’s internal state: assignments (in-
cluding macro definitions) are typical activities in this category. The other major thing
happening on this level is the construction of horizontal, vertical, and mathematical lists.

23

CHAPTER 1. THE STRUCTURE OF THE TgX PROCESSOR

4, The visual processor. In the final level of processing the visual part of TEX processing is
performed. Here horizontal lists are broken into paragraphs, vertical lists are broken into
pages, and formulas are built out of math lists. Also the output to the dvi file takes place
on this level. The algorithms working here are not accessible to the user, but they can be
influenced by a number of parameters.

1.2 The input processor

The input processor of TEX is that part of TEX that translates whatever characters it gets from
the input file into tokens. The output of this processor is a stream of tokens: a token list. Most to-
kens fall into one of two categories: character tokens and control sequence tokens. The remaining
category is that of the parameter tokens; these will not be treated in this chapter.

1.2.1 Character input

For simple input text, characters are made into character tokens. However, TEX can ignore input
characters: a row of spaces in the input is usually equivalent to just one space. Also, TEX itself can
insert tokens that do not correspond to any character in the input, for instance the space token at
the end of the line, or the \par token after an empty line.

Not all character tokens signify characters to be typeset. Characters fall into sixteen categories
— each one specifying a certain function that a character can have — of which only two contain
the characters that will be typeset. The other categories contain such characters as {, }, &, and #.
A character token can be considered as a pair of numbers: the character code — typically the ASCII
code — and the category code. It is possible to change the category code that is associated with a
particular character code.

When the escape character (by default \) appears in the input, TEX’s behaviour in forming tokens
is more complicated. Basically, TgX builds a control sequence by taking a number of characters
from the input and lumping them together into a single token.

The behaviour with which TEX’s input processor reacts to category codes can be described as a
machine that switches between three internal states: IV, new line; M, middle of line; S, skipping
spaces. These states and the transitions between them are treated in Chapter 2.

1.2.2 Two-level input processing

TEX’s input processor is in fact itself a two-level processor. Because of limitations of the terminal,
the editor, or the operating system, the user may not be able to input certain desired characters.
Therefore, TEX provides a mechanism to access with two superscript characters all of the available
character positions. This may be considered a separate stage of TEX processing, taking place prior
to the three-state machine mentioned above.

For instance, the sequence ~~+ is replaced by k because the ASCII codes of k and + differ by 64.
Since this replacement takes place before tokens are formed, writing \vs~~+ip 5cm has the same
effect as \vskip 5cm. Examples more useful than this exist.

Note that this first stage is a transformation from characters to characters, without considering
category codes. These come into play only in the second phase of input processing where characters
are converted to character tokens by coupling the category code to the character code.

24 Victor Eijkhout — TgX by Topic

1.3. THE EXPANSION PROCESSOR

1.3 The expansion processor

TEX’s expansion processor accepts a stream of tokens and, if possible, expands the tokens in this
stream one by one until only unexpandable tokens remain. Macro expansion is the clearest exam-
ple of this: if a control sequence is a macro name, it is replaced (together possibly with parameter
tokens) by the definition text of the macro.

Input for the expansion processor is provided mainly by the input processor. The stream of tokens
coming from the first stage of TEX processing is subject to the expansion process, and the result is
a stream of unexpandable tokens which is fed to the execution processor.

However, the expansion processor comes into play also when (among others) an \edef or \write
is processed. The parameter token list of these commands is expanded very much as if the lists
had been on the top level, instead of the argument to a command.

1.3.1 The process of expansion

Expanding a token consists of the following steps:

1. See whether the token is expandable.

2. If the token is unexpandable, pass it to the token list currently being built, and take on
the next token.

3. If the token is expandable, replace it by its expansion. For macros without parameters,

and a few primitive commands such as \jobname, this is indeed a simple replacement.
Usually, however, TEX needs to absorb some argument tokens from the stream in order
to be able to form the replacement of the current token. For instance, if the token was a
macro with parameters, sufficiently many tokens need to be absorbed to form the argu-
ments corresponding to these parameters.

4. Go on expanding, starting with the first token of the expansion.

Deciding whether a token is expandable is a simple decision. Macros and active characters, con-
ditionals, and a number of primitive TEX commands (see the list on page 125) are expandable,
other tokens are not. Thus the expansion processor replaces macros by their expansion, it eval-
uates conditionals and eliminates any irrelevant parts of these, but tokens such as \vskip and
character tokens, including characters such as dollars and braces, are passed untouched.

1.3.2 Special cases: \expandafter, \noexpand, and \the

As stated above, after a token has been expanded, TEX will start expanding the resulting tokens.
At first sight the \expandafter command would seem to be an exception to this rule, because it
expands only one step. What actually happens is that the sequence

\expandafter(token;)(token,)
is replaced by
(token;) (expansion of tokens)
and this replacement is in fact reexamined by the expansion processor.
Real exceptions do exist, however. If the current token is the \noexpand command, the next token

is considered for the moment to be unexpandable: it is handled as if it were \relax, and it is
passed to the token list being built.

For example, in the macro definition

Victor Eijkhout — TgX by Topic 25

CHAPTER 1. THE STRUCTURE OF THE TgX PROCESSOR

\edef\a{\noexpand\b}

the replacement text \noexpand\b is expanded at definition time. The expansion of \noexpand is
the next token, with a temporary meaning of \relax. Thus, when the expansion processor tackles
the next token, the \b, it will consider that to be unexpandable, and just pass it to the token list
being built, which is the replacement text of the macro.

Another exception is that the tokens resulting from \the(token variable) are not expanded further
if this statement occurs inside an \edef macro definition.

1.3.3 Braces in the expansion processor

Above, it was said that braces are passed as unexpandable character tokens. In general this is
true. For instance, the \romannumeral command is handled by the expansion processor; when
confronted with

\romannumerall\number\count2 3{4 ...
TEX will expand until the brace is encountered: if \count2 has the value of zero, the result will be
the roman numeral representation of 103.
As another example,
\iftrue {\else }\fi
is handled by the expansion processor completely analogous to
\iftrue a\else b\fi
The result is a character token, independent of its category.
However, in the context of macro expansion the expansion processor will recognize braces. First of

all, a balanced pair of braces marks off a group of tokens to be passed as one argument. If a macro
has an argument

\def\macro#1{ ... }

one can call it with a single token, as in

\macro 1 \macro \$

or with a group of tokens, surrounded by braces
\macro {abc} \macro {d{ef}g}

Secondly, when the arguments for a macro with parameters are read, no expressions with unbal-
anced braces are accepted. In

\def\a#1\stop{ ... }

the argument consists of all tokens up to the first occurrence of \stop that is not in braces: in
\a bc{d\stoplte\stop

the argument of \a is bc{d\stop}e. Only balanced expressions are accepted here.

14 The execution processor

The execution processor builds lists: horizontal, vertical, and math lists. Corresponding to these
lists, it works in horizontal, vertical, or math mode. Of these three modes ‘internal’ and ‘external’

26 Victor Eijkhout — TgX by Topic

1.5. THE VISUAL PROCESSOR

variants exist. In addition to building lists, this part of the TgX processor also performs mode-
independent processing, such as assignments.

Coming out of the expansion processor is a stream of unexpandable tokens to be processed by the
execution processor. From the point of view of the execution processor, this stream contains two
types of tokens:

. Tokens signalling an assignment (this includes macro definitions), and other tokens sig-
nalling actions that are independent of the mode, such as \show and \aftergroup.
. Tokens that build lists: characters, boxes, and glue. The way they are handled depends

on the current mode.

Some objects can be used in any mode; for instance boxes can appear in horizontal, vertical, and
math lists. The effect of such an object will of course still depend on the mode. Other objects are
specific for one mode. For instance, characters (to be more precise: character tokens of categories
11 and 12), are intimately connected to horizontal mode: if the execution processor is in vertical
mode when it encounters a character, it will switch to horizontal mode.

Not all character tokens signal characters to be typeset: the execution processor can also en-
counter math shift characters (by default $) and beginning/end of group characters (by default {
and }). Math shift characters let TEX enter or exit math mode, and braces let it enter or exit a new
level of grouping.

One control sequence handled by the execution processor deserves special mention: \relax. This
control sequence is not expandable, but the execution is to do nothing. Compare the effect of
\relax in

\countO=1\relax 2

with that of \empty defined by
\def\empty{}

in

\countO=1\empty 2

In the first case the expansion process that is forming the number stops at \relax and the number
1 is assigned; in the second case \empty expands to nothing, so 12 is assigned.

1.5 The visual processor

TEX’s output processor encompasses those algorithms that are outside direct user control: para-
graph breaking, alignment, page breaking, math typesetting, and dvi file generation. Various
parameters control the operation of these parts of TEX.

Some of these algorithms return their results in a form that can be handled by the execution pro-
cessor. For instance, a paragraph that has been broken into lines is added to the main vertical list
as a sequence of horizontal boxes with intermediate glue and penalties. Also, the page breaking
algorithm stores its result in \box255, so output routines can dissect it. On the other hand, a math
formula can not be broken into pieces, and, naturally, shipping a box to the dvi file is irreversible.

Victor Eijkhout — TgX by Topic 27

CHAPTER 1. THE STRUCTURE OF THE TgX PROCESSOR

1.6 Examples

1.6.1 Skipped spaces

Skipped spaces provide an illustration of the view that TEX’s levels of processing accept the com-
pleted input of the previous level. Consider the commands

\def\a{\penalty200}
\a 0

This is not equivalent to

\penalty200 O

which would place a penalty of 200, and typeset the digit 0. Instead it expands to
\penalty2000

because the space after \a is skipped in the input processor. Later stages of processing then receive
the sequence

\a0

1.6.2 Internal quantities and their representations

TEX uses various sorts of internal quantities, such as integers and dimensions. These inter-
nal quantities have an external representation, which is a string of characters, such as 4711
or 91.44cm.

Conversions between the internal value and the external representation take place on two differ-
ent levels, depending on what direction the conversion goes. A string of characters is converted to
an internal value in assignments such as

\pageno=12 \baselineskip=13pt

or statements such as

\vskip 5.71pt

and all of these statements are handled by the execution processor.

On the other hand, the conversion of the internal values into a representation as a string of
characters is handled by the expansion processor. For instance,

\number\pageno \romannumeral\year
\the\baselineskip

are all processed by expansion.

As a final example, suppose \count2=45, and consider the statement
\countO=1\number\count2 3

The expansion processor tackles \number\count2 to give the characters 45, and the space after the
2 does not end the number being assigned: it only serves as a delimiter of the number of the \count
register. In the next stage of processing, the execution processor will then see the statement

\count0=1453
and execute this.

28 Victor Eijkhout — TgX by Topic

Chapter 2

Category Codes and Internal States

When characters are read, TEX assigns them category codes. The reading mechanism has three
internal states, and transitions between these states are affected by category codes of charac-
ters in the input. This chapter describes how TEX reads its input and how the category codes of
characters influence the reading behaviour. Spaces and line ends are discussed.

\endlinechar The character code of the end-of-line character appended to input lines. IniTgX
default: 13.

\par Command to close off a paragraph and go into vertical mode. Is generated by empty lines.

\ignorespaces Command that reads and expands until something is encountered that is not a
(space token).

\catcode Query or set category codes.

\ifcat Test whether two characters have the same category code.

\L Control space. Insert the same amount of space that a space token would when
\spacefactor = 1000.

\obeylines Macro in plain TEX to make line ends significant.

\obeyspaces Macro in plain TEX to make (most) spaces significant.

2.1 Introduction

TEX’s input processor scans input lines from a file or terminal, and makes tokens out of the char-
acters. The input processor can be viewed as a simple finite state automaton with three internal
states; depending on the state its scanning behaviour may differ. This automaton will be treated
here both from the point of view of the internal states and of the category codes governing the
transitions.

2.2 Initial processing

Input from a file (or from the user terminal, but this will not be mentioned specifically most of the
time) is handled one line at a time. Here follows a discussion of what exactly is an input line for

TiX.

Computer systems differ with respect to the exact definition of an input line. The carriage return/
line feed sequence terminating a line is most common, but some systems use just a line feed,

29

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

and some systems with fixed record length (block) storage do not have a line terminator at all.
Therefore TEX has its own way of terminating an input line.

1. An input line is read from an input file (minus the line terminator, if any).

2. Trailing spaces are removed (this is for the systems with block storage, and it prevents
confusion because these spaces are hard to see in an editor).

3. The \endlinechar is appended. By default this is character code 13, which is the ASCII

code of the (return) character. However, note that TgX is independent of ASCII. If the
value of \endlinechar is negative or more than 255 (this was 127 in versions of TEX older
than version 3; see page 281 for more differences), no character is appended. The effect
then is the same as if the line were to end with a comment character.

Computers may also differ in the character encoding (the most common schemes are ASCII and
EBCDIC), so TEX converts the characters that are read from the file to its own character codes.
These codes are then used exclusively, so that TEX will perform the same on any system. For more
on this, see Chapter 3.

2.3 Category codes

Each of the 256 character codes (0-255) has an associated category code, though not necessarily
always the same one. There are 16 categories, numbered 0-15. When scanning the input, TEX
thus forms character-code—category-code pairs. The input processor sees only these pairs; from
them are formed character tokens, control sequence tokens, and parameter tokens. These tokens
are then passed to TEX’s expansion and execution processes.

A character token is a character-code—category-code pair that is passed unchanged. A control
sequence token consists of one or more characters preceded by an escape character; see below.
Parameter tokens are also explained below.

This is the list of the categories, together with a brief description. More elaborate explanations
follow in this and later chapters.

0. Escape character; this signals the start of a control sequence. IniTEX makes the backslash
\ (code 92) an escape character.

1. Beginning of group; such a character causes TEX to enter a new level of grouping. The
plain format makes the open brace { a beginningof-group character.

2. End of group; TEX closes the current level of grouping. Plain TEX has the closing brace }
as end-of-group character.

3. Math shift; this is the opening and closing delimiter for math formulas. Plain TEX uses
the dollar sign $ for this.

4, Alignment tab; the column (row) separator in tables made with \halign (\valign). In
plain TEX this is the ampersand &.

5. End of line; a character that TEX considers to signal the end of an input line. IniTEX as-

signs this code to character code 13, which is the ASCII value of the (return) character. Not
coincidentally, 13 is also the value that IniTEX assigns to the \endlinechar parameter;
see above.

6. Parameter character; this indicates parameters for macros. In plain TgX this is the hash
sign #.

30 Victor Eijkhout — TgX by Topic

2.3. CATEGORY CODES

10.

11.

12.

13.

14.

15.

Superscript; this precedes superscript expressions in math mode. It is also used to denote
character codes that cannot be entered in an input file; see below. In plain TEX this is the
circumflex ~.

Subscript; this precedes subscript expressions in math mode. In plain TEX the under-
score _ is used for this.

Ignored; characters of this category are removed from the input, and have therefore no
influence on further TEX processing. In plain TEX this is the (null) character, that is,
code 0.

Space; space characters receive special treatment. IniTEX assigns this category to the
ASCII (space) character, code 32.

Letter; in IniTEX only the characters a..z, A..Z are in this category. Often, macro pack-
ages make some ‘secret’ character (for instance @) into a letter.

Other; IniTEX puts everything that is not in the other categories into this category. Thus
it includes, for instance, digits and punctuation.

Active; active characters function as a TEX command, without being preceded by an es-
cape character. In plain TgX this is only the tie character ~, which is defined to produce
an unbreakable space; see page 187.

Comment character; from a comment character onwards, TEX considers the rest of an
input line to be comment and ignores it. In IniTEX the per cent sign % is made a comment
character.

Invalid character; this category is for characters that should not appear in the input.
IniTEX assigns the ASCII (delete) character, code 127, to this category.

The user can change the mapping of character codes to category codes with the \catcode command
(see Chapter 36 for the explanation of concepts such as (equals)):

\catcode(number)(equals)(number).

In such a statement, the first number is often given in the form

‘(character) or ¢\(character)

both of which denote the character code of the character (see pages 45 and 80).

The plain format defines \active
\chardef\active=13

so that one can write statements such as
\catcode ‘\{=\active

The \chardef command is treated on pages 46 and 81.

The IATEX format has the control sequences

\def\makeatletter{\catcode‘@=11 }
\def\makeatother{\catcode‘@=12 }

in order to switch on and off the ‘secret’ character @ (see below).

The \catcode command can also be used to query category codes: in
\count255=\catcode ‘\{
it yields a number, which can be assigned.

Category codes can be tested by

\ifcat(token;)(tokens)

Victor Eijkhout — TgX by Topic 31

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

TEX expands whatever is after \ifcat until two unexpandable tokens are found; these are then
compared with respect to their category codes. Control sequence tokens are considered to have
category code 16, which makes them all equal to each other, and unequal to all character tokens.
Conditionals are treated further in Chapter 13.

2.4 From characters to tokens

The input processor of TEX scans input lines from a file or from the user terminal, and converts
the characters in the input to tokens. There are three types of tokens.

o Character tokens: any character that is passed on its own to TEX’s further levels of pro-
cessing with an appropriate category code attached.
. Control sequence tokens, of which there are two kinds: an escape character — that is, a

character of category 0 — followed by a string of ‘letters’ is lumped together into a control
word, which is a single token. An escape character followed by a single character that is
not of category 11, letter, is made into a control symbol. If the distinction between control
word and control symbol is irrelevant, both are called control sequence.

The control symbol that results from an escape character followed by a space character is
called control space.

o Parameter tokens: a parameter character — that is, a character of category 6, by de-

fault # — followed by a digit 1..9 is replaced by a parameter token. Parameter tokens
are allowed only in the context of macros (see Chapter 11).
A macro parameter character followed by another macro parameter character (not neces-
sarily with the same character code) is replaced by a single character token. This token
has category 6 (macro parameter), and the character code of the second parameter char-
acter. The most common instance is of this is replacing ## by #, where the subscript
denotes the category code.

2.5 The input processor as a finite state automaton

TEX’s input processor can be considered to be a finite state automaton with three internal states,
that is, at any moment in time it is in one of three states, and after transition to another state
there is no memory of the previous states.

2.5.1 State N: new line

State N is entered at the beginning of each new input line, and that is the only time TgX is in this
state. In state N all space tokens (that is, characters of category 10) are ignored; an end-of-line
character is converted into a \par token. All other tokens bring TgX into state M.

2.5.2 State S: skipping spaces

State S is entered in any mode after a control word or control space (but after no other control
symbol), or, when in state M, after a space. In this state all subsequent spaces or end-of-line
characters in this input line are discarded.

32 Victor Eijkhout — TgX by Topic

2.6. ACCESSING THE FULL CHARACTER SET

2.5.3 State M: middle of line

By far the most common state is M, ‘middle of line’. It is entered after characters of categories
1-4, 6-8, and 11-13, and after control symbols other than control space. An end-of-line character
encountered in this state results in a space token.

10 other 10
TN b N N
start N other M 10 S
0+11,11, ...
0+10
H N ot ¥ 1y
14 5:insert \par 14 5: insert space 14 5
stop stop stop

2.6 Accessing the full character set

Strictly speaking, TEX’s input processor is not a finite state automaton. This is because during the
scanning of the input line all trios consisting of two equal superscript characters (category code 7)
and a subsequent character (with character code < 128) are replaced by a single character with a
character code in the range 0-127, differing by 64 from that of the original character.

This mechanism can be used, for instance, to access positions in a font corresponding to character
codes that cannot be input, for instance because they are ASCII control characters. The most
obvious examples are the ASCII (return) and (delete) characters; the corresponding positions 13
and 127 in a font are accessible as "M and ~~7. However, since the category of ~~7 is 15, invalid,
that has to be changed before character 127 can be accessed.

In TgX3 this mechanism has been modified and extended to access 256 characters: any quadruplet
~~xy where both x and y are lowercase hexadecimal digits 0-9, a—f, is replaced by a character in
the range 0-255, namely the character the number of which is represented hexadecimally as xy.
This imposes a slight restriction on the applicability of the earlier mechanism: if, for instance, ~~a
is typed to produce character 33, then a following 0-9, a—f will be misunderstood.

While this process makes TEX’s input processor somewhat more powerful than a true finite state
automaton, it does not interfere with the rest of the scanning. Therefore it is conceptually sim-
pler to pretend that such a replacement of triplets or quadruplets of characters, starting with ~~,
is performed in advance. In actual practice this is not possible, because an input line may as-
sign category code 7 to some character other than the circumflex, thereby influencing its further
processing.

2.7 Transitions between internal states

Let us now discuss the effects on the internal state of TEX’s input processor when certain category
codes are encountered in the input.

Victor Eijkhout — TgX by Topic 33

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

2.7.1 0: escape character

When an escape character is encountered, TEX starts forming a control sequence token. Three
different types of control sequence can result, depending on the category code of the character
that follows the escape character.

o If the character following the escape is of category 11, letter, then TEX combines the
escape, that character and all following characters of category 11, into a control word.
After that TEX goes into state S, skipping spaces.

o With a character of category 10, space, a control symbol called control space results, and
TEX goes into state S.
. With a character of any other category code a control symbol results, and TgX goes into

state M, middle of line.

The letters of a control sequence name have to be all on one line; a control sequence name is
not continued on the next line if the current line ends with a comment sign, or if (by letting
\endlinechar be outside the range 0—255) there is no terminating character.

2,72 1-4,7-8, 11-13: non-blank characters
Characters of category codes 1-4, 7-8, and 11-13 are made into tokens, and TEX goes into state M.

2.7.3 5:end of line

Upon encountering an end-of-line character, TEX discards the rest of the line, and starts processing
the next line, in state N. If the current state was N, that is, if the line so far contained at most
spaces, a \par token is inserted; if the state was M, a space token is inserted, and in state S
nothing is inserted.

Note that by ‘end-of-line character’ a character with category code 5 is meant. This is not neces-
sarily the \endlinechar, nor need it appear at the end of the line. See below for further remarks
on line ends.

2,74 6: parameter

A parameter character — usually # — can be followed by either a digit 1. .9 in the context of macro
definitions or by another parameter character. In the first case a ‘parameter token’ results, in
the second case only a single parameter character is passed on as a character token for further
processing. In either case TEX goes into state M.

A parameter character can also appear on its own in an alignment preamble (see Chapter 25).

2.7.5 7:superscript

A superscript character is handled like most non-blank characters, except in the case where it is
followed by a superscript character of the same character code. The process that replaces these
two characters plus the following character (possibly two characters in TgX3) by another character
was described above.

34 Victor Eijkhout — TgX by Topic

2.8. LETTERS AND OTHER CHARACTERS

2.7.6 9:ignored character

Characters of category 9 are ignored; TEX remains in the same state.

2.7.7 10: space

A token with category code 10 — this is called a (space token), irrespective of the character code —
is ignored in states N and S (and the state does not change); in state M TEX goes into state S,
inserting a token that has category 10 and character code 32 (ASCII space). This implies that the
character code of the space token may change from the character that was actually input.

2.7.8 14: comment

A comment character causes TEX to discard the rest of the line, including the comment character.
In particular, the end-of-line character is not seen, so even if the comment was encountered in
state M, no space token is inserted.

2.7.9 15: invalid

Invalid characters cause an error message. TEX remains in the state it was in. However, in the
context of a control symbol an invalid character is acceptable. Thus \~ "7 does not cause any error
messages.

2.8 Letters and other characters

In most programming languages identifiers can consist of both letters and digits (and possibly
some other character such as the underscore), but control sequences in TgX are only allowed to
be formed out of characters of category 11, letter. Ordinarily, the digits and punctuation symbols
have category 12, other character. However, there are contexts where TEX itself generates a string
of characters, all of which have category code 12, even if that is not their usual category code.

This happens when the operations \string, \number, \romannumeral, \ jobname, \fontname, \meaning,
and \the are used to generate a stream of character tokens. If any of the characters delivered by
such a command is a space character (that is, character code 32), it receives category code 10,
space.

For the extremely rare case where a hexadecimal digit has been hidden in a control sequence, TEX
allows Aj2—F15 to be hexadecimal digits, in addition to the ordinary A;;—F;; (here the subscripts
denote the category codes).
For example,

\string\end gives four character tokens \jsejsniodis

Note that the escape character \15 is used in the output only because the value of \escapechar is
the character code for the backslash. Another value of \escapechar leads to another character in
the output of \string. The \string command is treated further in Chapter 3.

Spaces can wind up in control sequences:

\csname a b\endcsname

Victor Eijkhout — TgX by Topic 35

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

gives a control sequence token in which one of the three characters is a space. Turning this control
sequence token into a string of characters

\expandafter\string\csname a b\endcsname
gives \12a12010b12.

As a more practical example, suppose there exists a sequence of input files filel.tex, file2.tex,
and we want to write a macro that finds the number of the input file that is being processed. One
approach would be to write

\newcount\filenumber \def\getfilenumber file#1.{\filenumber=#1 }
\expandafter\getfilenumber\jobname.

where the letters file in the parameter text of the macro (see Section 11.5) absorb that part of
the jobname, leaving the number as the sole parameter.

However, this is slightly incorrect: the letters file resulting from the \jobname command have
category code 12, instead of 11 for the ones in the definition of \getfilenumber. This can be re-
paired as follows:

{\escapechar=-1

\expandafter\gdef\expandafter\getfilenumber
\string\file#1.{\filenumber=#1 }

}

Now the sequence \string\file gives the four letters fi2i12112e12; the \expandafter commands
let this be executed prior to the macro definition; the backslash is omitted because we put
\escapechar=-1. Confining this value to a group makes it necessary to use \gdef.

2.9 The \par token

TEX inserts a \par token into the input after an empty line, that is, when encountering a character
with category code 5, end of line, in state N. It is good to realize when exactly this happens: since
TEX leaves state N when it encounters any token but a space, a line giving a \par can only contain
characters of category 10. In particular, it cannot end with a comment character. Quite often this
fact is used the other way around: if an empty line is wanted for the layout of the input one can
put a comment sign on that line.

Two consecutive empty lines generate two \par tokens. For all practical purposes this is equiva-
lent to one \par, because after the first one TEX enters vertical mode, and in vertical mode a \par
only exercises the page builder, and clears the paragraph shape parameters.

A \par is also inserted into the input when TEX sees a (vertical command) in unrestricted hori-
zontal mode. After the \par has been read and expanded, the vertical command is examined anew
(see Chapters 6 and 17).

The \par token may also be inserted by the \end command that finishes off the run of TgX; see
Chapter 28.

It is important to realize that TEX does what it normally does when encountering an empty line
(which is ending a paragraph) only because of the default definition of the \par token. By redefin-
ing \par the behaviour caused by empty lines and vertical commands can be changed completely,
and interesting special effects can be achieved. In order to continue to be able to cause the actions

36 Victor Eijkhout — TgX by Topic

2.10. SPACES

normally associated with \par, the synonym \endgraf is available in the plain format. See further
Chapter 17.

The \par token is not allowed to be part of a macro argument, unless the macro has been declared
to be \long. A \par in the argument of a non-\long macro prompts TEX to give a ‘runaway argu-
ment’ message. Control sequences that have been \let to \par (such as \endgraf) are allowed,
however.

2.10 Spaces

This section treats some of the aspects of the space character and space token in the initial pro-
cessing stages of TEX. The topic of spacing in text typesetting is treated in Chapter 20.

2.10.1 Skipped spaces

From the discussion of the internal states of TEX’s input processor it is clear that some spaces in
the input never reach the output; in fact they never get past the input processor. These are for
instance the spaces at the beginning of an input line, and the spaces following the one that lets
TEX switch to state S.

On the other hand, line ends can generate spaces (which are not in the input) that may wind up
in the output. There is a third kind of space: the spaces that get past the input processor, or are
even generated there, but still do not wind up in the output. These are the (optional spaces) that
the syntax of TEX allows in various places.

2.10.2 Optional spaces

The syntax of TEX has the concepts of optional spaces and ‘one optional space’:

(one optional space) — (space token) | (empty)
(optional spaces) — (empty) | (space token)(optional spaces)

In general, (one optional space) is allowed after numbers and glue specifications, while (optional
spaces) are allowed whenever a space can occur inside a number (for example, between a minus
sign and the digits of the number) or glue specification (for example, between plus and 1£il). Also,
the definition of (equals) allows (optional spaces) before the = sign.

Here are some examples of optional spaces.

J A number can be delimited by (one optional space). This prevents accidents (see Chap-
ter 7), and it speeds up processing, as TEX can detect more easily where the (number)
being read ends. Note, however, that not every mumber’ is a (number): for instance the 2
in \magstep?2 is not a number, but the single token that is the parameter of the \magstep
macro. Thus a space or line end after this is significant. Another example is a parameter
number, for example #1: since at most nine parameters are allowed, scanning one digit
after the parameter character suffices.

. From the grammar of TgX it follows that the keywords £il1l and £i111 consist of il and
separate 1s, each of which is a keyword (see page 280 for a more elaborate discussion),
and hence can be followed by optional spaces. Therefore forms such as fil L 1 are also
valid. This is a potential source of strange accidents. In most cases, appending a \relax
token prevents such mishaps.

Victor Eijkhout — TgX by Topic 37

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

. The primitive command \ignorespaces may come in handy as the final command in a
macro definition. As it gobbles up optional spaces, it can be used to prevent spaces fol-
lowing the closing brace of an argument from winding up in the output inadvertently. For
example, in
\def\item#1{\par\leavevmode

\1llap{#1\enspace}\ignorespaces}
\item{a/}one line \item{b/} another line \item{c/}
yet another
the \ignorespaces prevents spurious spaces in the second and third item. An empty line
after \ignorespaces will still insert a \par, however.

2.10.3 Ignored and obeyed spaces

After control words spaces are ignored. This is not an instance of optional spaces, but it is due to
the fact that TEX goes into state S, skipping spaces, after control words. Similarly an end-of-line
character is skipped after a control word.
Numbers are delimited by only (one optional space), but still

a\count0=3, b gives ‘ab’,
because TEX goes into state S after the first space token. The second space is therefore skipped in
the input processor of TEX; it never becomes a space token.

Spaces are skipped furthermore when TgX is in state N, newline. When TgX is processing in
vertical mode space tokens (that is, spaces that were not skipped) are ignored. For example, the
space inserted (because of the line end) after the first box in

\par
\hbox{a}
\hbox{b}

has no effect.

Both plain TEX and I4TEX define a command \obeyspaces that makes spaces significant: after one
space other spaces are no longer ignored. In both cases the basis is

\catcode‘\ =13 \def {\space}

However, there is a difference between the two cases: in plain TEX

\def\space{ }

while in ETEX

\def\space{\leavevmode{} }

although the macros bear other names there.

The difference between the two macros becomes apparent in the context of \obeylines: each line
end is then a \par command, implying that each next line is started in vertical mode. An active
space is expanded by the plain macro to a space token, which is ignored in vertical mode. The
active spaces in KTEX will immediately switch to horizontal mode, so that each space is significant.

2.10.4 More ignored spaces

There are three further places where TEX will ignore space tokens.

38 Victor Eijkhout — TgX by Topic

2.10. SPACES

1. When TEX is looking for an undelimited macro argument it will accept the first token (or
group) that is not a space. This is treated in Chapter 11.

2. In math mode space tokens are ignored (see Chapter 23).

3. After an alignment tab character spaces are ignored (see Chapter 25).

2.10.5 (space token)

Spaces are anomalous in TEX. For instance, the \string operation assigns category code 12 to all
characters except spaces; they receive category 10. Also, as was said above, TEX’s input processor
converts (when in state M) all tokens with category code 10 into real spaces: they get character
code 32. Any character token with category 10 is called (space token)space! token. Space tokens
with character code not equal to 32 are called funny spaces.

After giving the character Q the category code of a space character, and using it
in a definition

\catcode ‘Q=10 \def\g{aQb}

we get

\show\q

macro:-> a b

because the input processor changes the character code of the funny space in the
definition.

Space tokens with character codes other than 32 can be created using, for instance, \uppercase.
However, ‘since the various forms of space tokens are almost identical in behaviour, there’s no
point dwelling on the details’; see [27] p. 377.

2.10.6 Control space

The ‘control space’ command \, contributes the amount of space that a (space token) would when
the \spacefactor is 1000. A control space is not treated like a space token, or like a macro ex-
panding to one (which is how \space is defined in plain TgX). For instance, TEX ignores spaces
at the beginning of an input line, but control space is a (horizontal command), so it makes TgX
switch from vertical to horizontal mode (and insert an indentation box). See Chapter 20 for the
space factor, and chapter 6 for horizontal and vertical modes.

2.10.7 ¢

The explicit symbol ‘. for a space is character 32 in the Computer Modern typewriter typeface.
However, switching to \tt is not sufficient to get spaces denoted this way, because spaces will still
receive special treatment in the input processor.

One way to let spaces be typeset by , is to set
\catcode‘\ =12

TEX will then take a space as the instruction to typeset character number 32. Moreover, subse-
quent spaces are not skipped, but also typeset this way: state S is only entered after a character
with category code 10. Similarly, spaces after a control sequence are made visible by changing the
category code of the space character.

Victor Eijkhout — TgX by Topic 39

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

2.11 More about line ends

TEX accepts lines from an input file, excluding any line terminator that may be used. Because
of this, TEX’s behaviour here is not dependent on the operating system and the line terminator
it uses (CR-LF, LF, or none at all for block storage). From the input line any trailing spaces are
removed. The reason for this is historic; it has to do with the block storage mode on IBM mainframe
computers. For some computer-specific problems with end-of-line characters, see [2].

A terminator character is then appended with a character code of \endlinechar, unless this pa-
rameter has a value that is negative or more than 255. Note that this terminator character need
not have category code 5, end of line.

2.11.1 Obeylines

Every once in a while it is desirable that the output uses the same line breaking as the input. The
following piece of code does the trick:

\catcode‘\""M=13

\def~"M{\par}/,

The \endlinechar character is here made active, and its meaning becomes \par. The comment
signs prevent TEX from seeing the terminator of the lines of this definition, and expanding it since
it is active.

However, it takes some care to embed this code in a macro. The definition
\def\obeylines{\catcode‘\""M=13 \def~"M{\par}}

will be misunderstood: TEX will discard everything after the second ~ "M, because this has category
code 5. Effectively, this line is then

\def\obeylines{\catcode‘\""M=13 \def

To remedy this, the definition itself has to be performed in a context where ~~M is an active char-
acter:
{\catcode‘\""M=13 %
\gdef\obeylines{\catcode ‘\""M=13 \def~"M{\parl}}%
}

Empty lines in the input are not taken into account in this definition: these disappear, because
two consecutive \par tokens are (in this case) equivalent to one. A slightly modified definition for
the line end as

\def~"M{\par\leavevmode}

remedies this: now every line end forces TEX to start a paragraph. For empty lines this will then
be an empty paragraph.

2.11.2 Changing the \endlinechar

Occasionally you may want to change the \endlinechar, or the \catcode of the ordinary line termi-
nator ~"M, for instance to obtain special effects such as macros where the argument is terminated
by the line end. See page 121 for a worked-out example.

There are a couple of traps. Consider the following:

40 Victor Eijkhout — TgX by Topic

2.12. MORE ABOUT THE INPUT PROCESSOR

{\catcode‘\""M=12 \endlinechar=‘\""J \catcode‘\""J=5

.}
This causes unintended output of both character 13 (~"M) and 10 (~~J), caused by the line termi-
nators of the first and last line.
Terminating the first and last line with a comment works, but replacing the first line by the two
lines

{\endlinechar=‘\""J \catcode‘\~"J=5
\catcode‘\""M=12

is also a solution.

Of course, in many cases it is not necessary to substitute another end-of-line character; a much
simpler solution is then to put

\endlinechar=-1

which treats all lines as if they end with a comment.

2.11.3 More remarks about the end-of-line character

The character that TEX appends at the end of an input line is treated like any other character.
Usually one is not aware of this, as its category code is special, but there are a few ways to let it
be processed in an unusual way.

Terminating an input line with ~~ will (ordinarily, when \endlinechar is 13) give
‘M’ in the output, which is the ASCII character with code 13+64.

If \""M has been defined, terminating an input line with a backslash will execute
this command. The plain format defines

\def\""M{\ }

which makes a ‘control return’ equivalent to a control space.

2.12 More about the input processor
2.12.1 The input processor as a separate process

TEX’s levels of processing are all working at the same time and incrementally, but conceptually
they can often be considered to be separate processes that each accept the completed output of the
previous stage. The juggling with spaces provides a nice illustration for this.

Consider the definition

\def\DoAssign{\count42=800}

and the call

\DoAssign 0

The input processor, the part of TgX that builds tokens, in scanning this call skips the space before
the zero, so the expansion of this call is

\count42=8000

Victor Eijkhout — TEX by Topic 41

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

It would be incorrect to reason ‘\DoAssign is read, then expanded, the space delimits the number
800, so 800 is assigned and the zero is printed’. Note that the same would happen if the zero
appeared on the next line.

Another illustration shows that optional spaces appear in a different stage of processing from that
for skipped spaces:

\def\c.{\relax}
al\c.. b

expands to
a\relax b
which gives as output
‘Al
because spaces after the \relax control sequence are only skipped when the line is first read, not
when it is expanded. The fragment

\def\c.{\ignorespaces}
a\c. b

on the other hand, expands to
a\ignorespaces b
Executing the \ignorespaces command removes the subsequent space token, so the output is
‘ab’.
In both definitions the period after \c is a delimiting token; it is used here to prevent spaces from
being skipped.

2.12.2 The input processor not as a separate process

Considering the tokenizing of TEX to be a separate process is a convenient view, but sometimes it
leads to confusion. The line

\catcode‘\""M=13{}

makes the line end active, and subsequently gives an ‘undefined control sequence’ error for the
line end of this line itself. Execution of the commands on the line thus influences the scanning
process of that same line.

By contrast,
\catcode ‘\""M=13
does not give an error. The reason for this is that TEX reads the line end while it is still scanning

the number 13; that is, at a time when the assignment has not been performed yet. The line end
is then converted to the optional space character delimiting the number to be assigned.

2.12.3 Recursive invocation of the input processor

Above, the activity of replacing a parameter character plus a digit by a parameter token was
described as something similar to the lumping together of letters into a control sequence token.
Reality is somewhat more complicated than this. TEX’s token scanning mechanism is invoked both
for input from file and for input from lists of tokens such as the macro definition. Only in the first
case is the terminology of internal states applicable.

42 Victor Eijkhout — TgX by Topic

2.13. THE e CONVENTION

Macro parameter characters are treated the same in both cases, however. If this were not the case
it would not be possible to write things such as

\def\a{\def\b{\def\c##i##1{####1}}}
See page 114 for an explanation of such nested definitions.

2.13 The @ convention

Anyone who has ever browsed through either the plain format or the KIEX format will have
noticed that a lot of control sequences contain an ‘at’ sign: @. These are control sequences that are
meant to be inaccessible to the ordinary user.

Near the beginning of the format files the instruction
\catcode‘@=11

occurs, making the at sign into a letter, meaning that it can be used in control sequences. Some-
where near the end of the format definition the at sign is made ‘other’ again:

\catcode ‘@=12

Now why is it that users cannot call a control sequence with an at sign directly, although they
can call macros that contain lots of those ‘at-definitions’? The reason is that the control sequences
containing an @ are internalized by TEX at definition time, after which they are a token, not a

string of characters. Macro expansion then just inserts such tokens, and at that time the category
codes of the constituent characters do not matter any more.

Victor Eijkhout — TgX by Topic 43

CHAPTER 2. CATEGORY CODES AND INTERNAL STATES

44 Victor Eijkhout — TgX by Topic

Chapter 3

Characters

Internally, TEX represents characters by their (integer) character code. This chapter treats those
codes, and the commands that have access to them.

\char Explicit denotation of a character to be typeset.

\chardef Define a control sequence to be a synonym for a character code.

\accent Command to place accent characters.

\if Test equality of character codes.

\ifx Test equality of both character and category codes.

\let Define a control sequence to be a synonym of a token.

\uccode Query or set the character code that is the uppercase variant of a given code.

\lccode Query or set the character code that is the lowercase variant of a given code.

\uppercase Convert the (general text) argument to its uppercase form.

\lowercase Convert the (general text) argument to its lowercase form.

\string Convert a token to a string of one or more characters.

\escapechar Number of the character that is to be used for the escape character when control
sequences are being converted into character tokens. IniTgX default: 92 (\).

3.1 Character codes

Conceptually it is easiest to think that TEX works with characters internally, but in fact TEX works
with integers: the character codes.

The way characters are encoded in a computer may differ from system to system. Therefore TEX
uses its own scheme of character codes. Any character that is read from a file (or from the user
terminal) is converted to a character code according to the character code table. A category code is
then assigned based on this (see Chapter 2). The character code table is based on the 7-bit ASCII
table for numbers under 128 (see Section 38.1).

There is an explicit conversion between characters (better: character tokens) and character codes
using the left quote (grave, back quote) character ¢: at all places where TEX expects a (number)
you can use the left quote followed by a character token or a single-character control sequence.
Thus both \count ‘a and \count ‘\a are synonyms for \count97. See also Chapter 7.

The possibility of a single-character control sequence is necessary in certain cases such as

45

CHAPTER 3. CHARACTERS

\catcode‘\%=11 or \def\CommentSign{\char‘\%}
which would be misunderstood if the backslash were left out. For instance
\catcode‘%=11

would consider the =11 to be a comment. Single-character control sequences can be formed from
characters with any category code.

After the conversion to character codes any connection with external representations has disap-
peared. Of course, for most characters the visible output will ‘equal’ the input (that is, an ‘a’ causes
an ‘a’). There are exceptions, however, even among the common symbols. In the Computer Modern
roman fonts there are no ‘less than’ and ‘greater than’ signs, so the input ‘<>’ will give ‘j;’ in the
output.

In order to make TgX machine independent at the output side, the character codes are also used in
the dvi file: opcodes n = 0...127 denote simply the instruction ‘take character n from the current
font’. The complete definition of the opcodes in a dvi file can be found in [25].

3.2 Control sequences for characters

There are a number of ways in which a control sequence can denote a character. The \char com-
mand specifies a character to be typeset; the \1let command introduces a synonym for a character
token, that is, the combination of character code and category code.

3.2.1 Denoting characters to be typeset: \char

The \char command can be used to generate characters in the output that are difficult to have
in the input. This can be because they are TEX special characters, or because their font position
corresponds to an unprintable ascii character.

Characters can be denoted numerically by, for example, \char98. This command tells TgX to add
character number 98 of the current font to the horizontal list currently under construction.

Instead of decimal notation, it is often more convenient to use octal or hexadecimal notation.
For octal the single quote is used: \char’142; hexadecimal uses the double quote: \char"62. Note
that using two single quotes, as \char’’62, is incorrect; the process that replaces two quotes by
a double quote works at a later stage of processing (the visual processor) than number scanning
(the execution processor).

Because of the explicit conversion to character codes by the back quote character it is also possible
to get a ‘b’ — provided that you are using a font organized a bit like the ASCII table — with \char ‘b
or \char ‘\b.

The \char command looks superficially a bit like the ~~ substitution mechanism (Chapter 2).
Both mechanisms access characters without directly denoting them. However, the ~~ mechanism
operates in a very early stage of processing (in the input processor of TEX, but before category
code assignment); the \char command, on the other hand, comes in the final stages of processing.
In effect it says ‘typeset character number so-and-so’.

There is a construction to let a control sequence stand for some character code: the \chardef
command. The syntax of this is

46 Victor Eijkhout — TgX by Topic

3.2. CONTROL SEQUENCES FOR CHARACTERS

\chardef (control sequence) (equals) (number),

where the number can be an explicit representation or a counter value, but it can also be a char-
acter code obtained using the left quote command (see above; the full definition of (number) is
given in Chapter 7). In the plain format the latter possibility is used in definitions such as

\chardef\%=\%

which could have been given equivalently as

\chardef\%=37

After this command, the control symbol \’ used on its own is a synonym for \char37, that is, the
command to typeset character 37 (usually the per cent character).

A control sequence that has been defined with a \chardef command can also be used as a (number).
This fact is used in allocation commands such as \newbox (see Chapters 7 and 31). Tokens defined
with \mathchardef can also be used this way.

3.2.2 Implicit character tokens: \let
Another construction defining a control sequence to stand for (among other things) a character
is \let:

\let(control sequence)(equals)(token)
with a character token on the right hand side of the (optional) equals sign. The result is called an
implicit character token. (See page 116 for a further discussion of \let.)
In the plain format there are for instance synonyms for the open and close brace:
\let\bgroup={ \let\egroup=}
The resulting control sequences are called ‘implicit braces’ (see Chapter 10).
Assigning characters by \1et is different from defining control sequences by \chardef, in the sense
that \let makes the control sequence stand for the combination of a character code and category
code.
As an example

\catcode‘|=2 % make the bar an end of group
\let\b=| % make \b a bar character
{\def\m{...}\b \m

gives an ‘undefined control sequence \m" because the \b closed the group inside which \m was
defined. On the other hand,

\let\b=| % make \b a bar character
\catcode‘|=2 Y, make the bar character end of group

{\def\mn{...}\b \m

leaves one group open, and it prints a vertical bar (or whatever is in position 124 of the current
font). The first of these examples implies that even when the braces have been redefined (for
instance into active characters for macros that format C code) the beginning-of-group and end-of-
group functionality is available through the control sequences \bgroup and \egroup.

Here is another example to show that implicit character tokens are hard to distinguish from real
character tokens. After the above sequence

Victor Eijkhout — TEgX by Topic 47

CHAPTER 3. CHARACTERS

\catcode‘|=2 \let\b=|
the tests

\if\bl|

and

\ifcat\b}

are both true.

Yet another example can be found in the plain format: the commands
\let\sp=" \let\sb=_

allow people without an underscore or circumflex on their keyboard to make sub- and superscripts
in mathematics. For instance:

2

ij

If a person typing in the format itself does not have these keys, some further tricks are needed:
{\lccode‘,=94 \lccode‘.=95 \catcode‘,=7 \catcode‘.=8

\lowercase{\global\let\sp=, \globalllet\sb=.}}

will do the job; see below for an explanation of lowercase codes. The ~~ method as it was in TEX
version 2 (see page 33) cannot be used here, as it would require typing two characters that can
ordinarily not be input. With the extension in TgX version 3 it would also be possible to write
{\catcode‘\,=7

\global\let\sp=,,5e \globalllet\sb=,,5f}

denoting the codes 94 and 95 hexadecimally.

x\sp2\sb{ij} gives =z

Finding out just what a control sequence has been defined to be with \let can be done using
\meaning: the sequence

\let\x=3 \meaning\x
gives ‘the character 3.

3.3 Accents

Accents can be placed by the (horizontal command) \accent :
\accent(8-bit number)(optional assignments)(character)

where (character) is a character of category 11 or 12, a \char(8-bit number) command, or a \chardef
token. If none of these four types of (character) follows, the accent is taken to be a \char com-
mand itself; this gives an accent ‘suspended in mid-air’. Otherwise the accent is placed on top of
the following character. Font changes between the accent and the character can be effected by the
(optional assignments).

An unpleasant implication of the fact that an \accent command has to be followed by a (character)
is that it is not possible to place an accent on a ligature, or two accents on top of each other. In
some languages, such as Hindi or Vietnamese, such double accents do occur. Positioning accents
on top of each other is possible, however, in math mode.

The width of a character with an accent is the same as that of the unaccented character. TEX
assumes that the accent as it appears in the font file is properly positioned for a character that is

48 Victor Eijkhout — TgX by Topic

3.4. TESTING CHARACTERS

as high as the x-height of the font; for characters with other heights it correspondingly lowers or
raises the accent.

No genuine under-accents exist in TEX. They are implemented as low placed over-accents. A way
of handling them more correctly would be to write a macro that measures the following character,
and raises or drops the accent accordingly. The cedilla macro \c in plain TgX does something along
these lines. However, it does not drop the accent for characters with descenders.

The horizontal positioning of an accent is controlled by \fontdimen1, slant per point. Kerns are
used for the horizontal movement. Note that, although they are inserted automatically, these
kerns are classified as explicit kerns. Therefore they inhibit hyphenation in the parts of the word
before and after the kern.

As an example of kerning for accents, here follows the dump of a horizontal list.
\setbox0=\hbox{\it \‘1}

\showbox0

gives

\hbox (9.58334+0.0)x2.55554

.\kern -0.61803 (for accent)

.\hbox(6.94444+0.0)x5.11108, shifted -2.6389

..\tenit ~°R
.\kern -4.49306 (for accent)
.\tenit 1

Note that the accent is placed first, so afterwards the italic correction of the last character is still
available.

3.4 Testing characters

Equality of character codes is tested by \if:
\if(token;)(tokens)

Tokens following this conditional are expanded until two unexpandable tokens are left. The con-
dition is then true if those tokens are character tokens with the same character code, regardless
of category code.

An unexpandable control sequence is considered to have character code 256 and category code 16
(so that it is unequal to anything except another control sequence), except in the case where it
had been \let to a non-active character token. In that case it is considered to have the character
code and category code of that character. This was mentioned above.
The test \ifcat for category codes was mentioned in Chapter 2; the test

\ifx(token;)(tokens)
can be used to test for category code and character code simultaneously. The tokens following this
test are not expanded. However, if they are macros, TEX tests their expansions for equality.
Quantities defined by \chardef can be tested with \ifnum:
\chardef\a=‘x \chardef\b=‘y \ifnum\a=\b % is false
based on the fact (see Chapter 7) that (chardef token)s can be used as numbers.

See also section 13.2

Victor Eijkhout — TgX by Topic 49

CHAPTER 3. CHARACTERS

3.5 Uppercase and lowercase
3.5.1 Uppercase and lowercase codes
To each of the character codes correspond an uppercase code and a lowercase code (for still more
codes see below). These can be assigned by
\uccode(number)(equals)(number)
and
\lccode(number)({equals)(number).

In IniTEX codes ‘a..‘z, ‘A..‘Z have uppercase code ‘A..‘Z and lowercase code ‘a.. ‘z. All other
character codes have both uppercase and lowercase code zero.

3.5.2 Uppercase and lowercase commands

The commands \uppercase{. ..} and \lowercase{. ..} go through their argument lists, replacing
all character codes of explicit character tokens by their uppercase and lowercase code respectively
if these are non-zero, without changing the category codes.

The argument of \uppercase and \lowercase is a (general text), which is defined as

(general text) — (filler){(balanced text)(right brace)

(for the definition of (filler) see Chapter 36) meaning that the left brace can be implicit, but the
closing right brace must be an explicit character token with category code 2. TEX performs expan-
sion to find the opening brace.

Uppercasing and lowercasing are executed in the execution processor; they are not ‘macro expan-
sion’ activities like \number or \string. The sequence (attempting to produce \4)
\expandafter\csname\uppercase{al}\endcsname

gives an error (TEX inserts an \endcsname before the \uppercase because \uppercase is unexpand-
able), but

\uppercase{\csname a\endcsname}

works.

As an example of the correct use of \uppercase, here is a macro that tests if a character is upper-
case:

\def\ifIsUppercase#l{\uppercase{\if#1}#13}

The same test can be performed by \ifnum‘#1=\uccode ‘#1.

Hyphenation of words starting with an uppercase character, that is, a character not equal to its

own \lccode, is subject to the \uchyph parameter: if this is positive, hyphenation of capitalized
words is allowed. See also Chapter 19.

3.5.3 Uppercase and lowercase forms of keywords

Each character in TEX keywords, such as pt, can be given in uppercase or lowercase form. For
instance, pT, Pt, pt, and PT all have the same meaning. TEX does not use the \uccode and \1ccode
tables here to determine the lowercase form. Instead it converts uppercase characters to lower-
case by adding 32 — the AscII difference between uppercase and lowercase characters — to their
character code. This has some implications for implementations of TEX for non-roman alphabets;

see page 370 of the TgX book, [27].

50 Victor Eijkhout — TgX by Topic

3.6. CODES OF A CHARACTER

3.54 Creative use of \uppercase and \lowercase

The fact that \uppercase and \lowercase do not change category codes can sometimes be used
to create certain character-code—category-code combinations that would otherwise be difficult to
produce. See for instance the explanation of the \newif macro in Chapter 13, and another example
on page 48.

For a slightly different application, consider the problem (solved by Rainer Schopf) of, given a
counter \newcount\mycount, writing character number \mycount to the terminal. Here is a solu-
tion:

\lccode‘a=\mycount \chardef\terminal=16

\lowercase{\write\terminal{a}}

The \lowercase command effectively changes the argument of the \write command from ‘a’ into
whatever it should be.

3.6 Codes of a character

Each character code has a number of (codename)s associatedcodenames with it. These are inte-
gers in various ranges that determine how the character is treated in various contexts, or how the
occurrence of that character changes the workings of TEX in certain contexts.

The code names are as follows:

\catcode (4-bit number) (0-15); the category to which a character belongs. This is treated in
Chapter 2.

\mathcode (15-bit number) (0—"7FFF) or "8000; determines how a character is treated in math
mode. See Chapter 21.

\delcode (27-bit number) (0—"7 FFF FFF); determines how a character is treated after \left or
\right in math mode. See page 193.

\sfcode integer; determines how spacing is affected after this character. See Chapter 20.

\lccode, \uccode (8-bit number) (0-255); lowercase and uppercase codes — these were treated
above.

3.7 Converting tokens into character strings

The command \string takes the next token and expands it into a string of separate characters.
Thus

\tt\string\control

will give \control in the output, and

\tt\string$

will give $, but, noting that the string operation comes after the tokenizing,

\tt\string¥

will not give ¥, because the comment sign is removed by TEX’s input processor. Therefore, this
command will ‘string’ the first token on the next line.

The \string command is executed by the expansion processor, thus it is expanded unless explicitly
inhibited (see Chapter 12).

Victor Eijkhout — TgX by Topic 51

CHAPTER 3. CHARACTERS

3.7.1 Output of control sequences

In the above examples the typewriter font was selected, because the Computer Modern roman font
does not have a backslash character. However, TEX need not have used the backslash character
to display a control sequence: it uses character number \escapechar. This same value is also
used when a control sequence is output with \write, \message, or \errmessage, and it is used in
the output of \show, \showthe and \meaning. If \escapechar is negative or more than 255, the
escape character is not output; the default value (set in IniTEX) is 92, the number of the backslash
character.

For use in a \write statement the \string can in some circumstances be replaced by \noexpand
(see page 134).

3.7.2 Category codes of a \string

The characters that are the result of a \string command have category code 12, except for any
spaces in a stringed control sequence; they have category code 10. Since inside a control sequence
there are no category codes, any spaces resulting from \string are of necessity only space char-
acters, that is, characters with code 32. However, TEX’s input processor converts all space tokens
that have a character code other than 32 into character tokens with character code 32, so the
chances are pretty slim that ‘funny spaces’ wind up in control sequences.

Other commands with the same behaviour with respect to category codes as \string, are \number,
\romannumeral, \ jobname, \fontname, \meaning, and \the.

52 Victor Eijkhout — TgX by Topic

Chapter 4

Fonts

In text mode TgX takes characters from a ‘current font’. This chapter describes how fonts are
identified to TEX, and what attributes a font can have.

\font Declare the identifying control sequence of a font.

\fontname The external name of a font.

\nullfont Name of an empty font that TEX uses in emergencies.

\hyphenchar Number of the hyphen character of a font.

\defaulthyphenchar Value of \hyphenchar when a font is loaded. Plain TgX default: ‘\-.
\fontdimen Access various parameters of fonts.

\char47 Italic correction.

\noboundary Omit implicit boundary character.

4.1 Fonts

In TgX terminology a font is the set of characters that is contained in one external font file. Dur-
ing processing, TEX decides from what font a character should be taken. This decision is taken
separately for text mode and math mode.

When TgX is processing ordinary text, characters are taken from the ‘current font’. External font
file names are coupled to control sequences by statements such as
\font\MyFont=myfont10

which makes TEX load the file myfont10.tfm. Switching the current font to the font described in
that file is then done by

\MyFont
The status of the current font can be queried: the sequence
\the\font

produces the control sequence for the current font.

Math mode completely ignores the current font. Instead it looks at the ‘current family’, which can
contain three fonts: one for text style, one for script style, and one for scriptscript style. This is
treated in Chapter 21.

See [44] for a consistent terminology of fonts and typefaces.

53

CHAPTER 4. FONTS

With ‘virtual fonts’ (see [26]) it is possible that what looks like one font to TEX resides in more
than one physical font file. See further page 265.

4.2 Font declaration

Somewhere during a run of TEX or IniTgX the coupling between an internal identifying control
sequence and the external file name of a font has to be made. The syntax of the command for this
is

\font(control sequence)(equals)(file name)(at clause)
where

(at clause) — at (dimen) | scaled (number) | (optional spaces)
Font declarations are local to a group.
By the (at clause) the user specifies that some magnified version of the font is wanted. The (at
clause) comes in two forms: if the font is given scaled f, TEX multiplies all its font dimensions for
that font by f/1000; if the font has a design size dpt and the (at clause) is at ppt, TEX multiplies

all font data by p/d. The presence of an (at clause) makes no difference for the external font file
(the .tfm file) that TEX reads for the font; it just multiplies the font dimensions by a constant.

After such a font declaration, using the defined control sequence will set the current font to the
font of the control sequence.

4.2.1 Fonts and tfm files

The external file needed for the font is a tfm (TEX font metrics) file, which is taken independent
of any (at clause) in the \font declaration. If the tfm file has been loaded already (for instance by
IniTEX when it constructed the format), an assignment of that font file can be reexecuted without
needing recourse to the tfm file.

Font design sizes are given in the font metrics files. The cmr10 font, for instance, has a design
size of 10 point. However, there is not much in the font that actually has a size of 10 points: the
opening and closing parentheses are two examples, but capital letters are considerably smaller.

4.2.2 Querying the current font and font names
It was already mentioned above that the control sequence which set the current font can be re-
trieved by the command \the\font. This is a special case of
\the(font)
where

(font) — \font | (fontdef token) | (family member)
(family member) — (font range)(4-bit number)
(font range) — \textfont | \scriptfont | \scriptscriptfont

A (fontdef token) is a control sequence defined by \font, or the predefined control sequence
\nullfont. The concept of (family member) is only relevant in math mode.

Also, the external name of fonts can be retrieved:

54 Victor Eijkhout — TgX by Topic

4.3. FONT INFORMATION

\fontname(font)

gives a sequence of character tokens of category 12 (but space characters get category 10) that
spells the font file name, plus an (at clause) if applicable.

After

\font\tenroman=cmr10 \tenroman

the calls \the\font and \the\tenroman both give \tenroman. The call \fontname\tenroman
gives cmr10.

4.2.3 \nullfont

TEX always knows a font that has no characters: the \nullfont. If no font has been specified, or if
in math mode a family member is needed that has not been specified, TEX will take its characters
from the nullfont. This control sequence qualifies as a (fontdef token): it acts like any other control
sequence that stands for a font; it just does not have an associated tfm file.

4.3 Font information

During a run of TEX the main information needed about the font consists of the dimensions of the
characters. TEX finds these in the font metrics files, which usually have extension .tfm. Such files
contain

. global information: the \fontdimen parameters, and some other information,
o dimensions and the italic corrections of characters, and
. ligature and kerning programs for characters.

Also, the design size of a font is specified in the tfm file; see above. The definition of the tfm format
can be found in [25].

4.3.1 Font dimensions

Text fonts need to have at least seven \fontdimen parameters to describe font dimensions (but
TEX will take zero for unspecified parameters); math symbol and math extension fonts have more
(see page 208). For text fonts the minimal set of seven comprises the following:

1. the slant per point; this dimension is used for the proper horizontal positioning of accents;

2. the interword space: this is used unless the user specifies an explicit \spaceskip; see
Chapter 20;

3. interword stretch: the stretch component of the interword space;

4. interword shrink: the shrink component of the interword space;

5. the x-height: the value of the (internal unit) ex, which is usually about the height of the
lowercase letter x’;

6. the quad width: the value of the (internal unit) em, which is approximately the width of
the capital letter ‘M’; and

7. the extra space: the space added to the interword space at the end of sentences (that is,

when \spacefactor > 2000) unless the user specifies an explicit \xspaceskip.

Victor Eijkhout — TgX by Topic 55

CHAPTER 4. FONTS

Parameters 1 and 5 are purely information about the font and there is no point in varying them.
The values of other parameters can be changed in order to adjust spacing; see Chapter 20 for
examples of changing parameters 2, 3, 4, and 7.

Font dimensions can be altered in a (font assignment), which is a (global assignment) (see page 106):

\fontdimen(number)(font)(equals)(dimen)
See above for the definition of (font).

4.3.2 Kerning

Some combinations of characters should be moved closer together than would be the case if their
bounding boxes were to be just abutted. This fine spacing is called kerning, and a proper kerning
is as essential to a font as the design of the letter shapes.

Consider as an example
‘Vo’ versus the unkerned variant Vo’
Kerning in TEX is controlled by information in the tfm file, and is therefore outside the influence

of the user. The tfm file can be edited, however (see Chapter 33).

The \kern command has (almost) nothing to do with the phenomenon of kerning; it is explained
in Chapter 8.

4.3.3 Italic correction

The primitive control symbol \/ inserts the italic correction of the previous character or ligature.
Such a correction may be necessary owing to the definition of the bounding box of a character. This
box always has vertical sides, and the width of the character as TEX perceives it is the distance
between these sides. However, in order to achieve proper spacing for slanted or italic typefaces,
characters may very well project outside their bounding boxes. The italic correction is then needed
if such an overhanging character is followed by a character from a non-slanting typeface.

Compare for instance

“TEX has’ to ‘TgX has’,
where the second version was typed as
{\italic\TeX\/} has

The size of the italic correction of each character is determined by font information in the font met-
rics file; for the Computer Modern fonts it is approximately half the ‘overhang’ of the characters;
see [19]. Italic correction is not the same as \fontdimenl, slant per point. That font dimension is
used only for positioning accents on top of characters.

An italic correction can only be inserted if the previous item processed by TEX was a character or
ligature. Thus the following solution for roman text inside an italic passage does not work:

{\italic Some text {\/\roman not} emphasized}

The italic correction has no effect here, because the previous item is glue.

56 Victor Eijkhout — TgX by Topic

4.3. FONT INFORMATION

4.3.4 Ligatures

Replacement of character sequences by ligatures is controlled by information in the tfm file of a
font. Ligatures are formed from (character) commands: sequences such as fi are replaced by ‘fi’
in some fonts.

Other ligatures traditionally in use are between ff, £ffi, f1, and £f1; in some older works ft and
st can be found, and similarly to the f£1 ligature fk and fb can also occur.

Ligatures in TEX can be formed between explicit character tokens, \char commands, and (chardef
token)s. For example, the sequence \char ‘f\char ‘i is replaced by the ‘fi’ ligature, if such a liga-
ture is part of the font.

Unwanted ligatures can be suppressed in a number of ways: the unwanted ligature ‘halflife’ can
for instance be prevented by

half{}1life, half{l}ife, half\/life, or half\hbox{}1life
but the solution using italic correction is not equivalent to the others.

4.3.5 Boundary ligatures

Each word is surrounded by a left and a right boundary character (TEX3 only). This makes phe-
nomena possible such as the two different sigmas in Greek: one at the end of a word, and one
for every other position. This can be realized through a ligature with the boundary character.
A \noboundary command immediately before or after a word suppresses the boundary character
at that place.

In general, the ligature mechanism has become more complicated with the transition to TEX ver-
sion 3; see [22].

Victor Eijkhout — TgX by Topic 57

CHAPTER 4. FONTS

58 Victor Eijkhout — TgX by Topic

Chapter 5

Boxes

The horizontal and vertical boxes of TEX are containers for pieces of horizontal and vertical lists.
Boxes can be stored in box registers. This chapter treats box registers and such aspects of boxes
as their dimensions, and the way their components are placed relative to each other.

\hbox Construct a horizontal box.

\vbox Construct a vertical box with reference point of the last item.

\vtop Construct a vertical box with reference point of the first item.

\vcenter Construct a vertical box vertically centred on the math axis; this command can only be
used in math mode.

\vsplit Split off the top part of a vertical box.

\box Use a box register, emptying it.

\setbox Assign a box to a box register.

\copy Use a box register, but retain the contents.

\ifhbox \ifvbox Test whether a box register contains a horizontal/vertical box.

\ifvoid Test whether a box register is empty.

\newbox Allocate a new box register.

\unhbox \unvbox Unpack a box register containing a horizontal/vertical box, adding the contents
to the current horizontal/vertical list, and emptying the register.

\unhcopy \unvcopy The same as \unhbox/\unvbox, but do not empty the register.

\ht \dp \wd Height/depth/width of the box in a box register.

\boxmaxdepth Maximum allowed depth of boxes. Plain TEX default: \maxdimen.

\splitmaxdepth Maximum allowed depth of boxes generated by \vsplit.

\badness Badness of the most recently constructed box.

\hfuzz \vfuzz Excess size that TEX tolerates before it considers a horizontal/vertical box
overfull.

\hbadness \vbadness Amount of tolerance before TEX reports an underfull or overfull
horizontal/vertical box.

\overfullrule Width of the rule that is printed to indicate overfull horizontal boxes.

\hsize Line width used for text typesetting inside a vertical box.

\vsize Height of the page box.

\lastbox Register containing the last item added to the current list, if this was a box.

\raise \lower Adjust vertical positioning of a box in horizontal mode.

\moveleft \moveright Adjust horizontal positioning of a box in vertical mode.

\everyhbox \everyvbox Token list inserted at the start of a horizontal/vertical box.

59

CHAPTER 5. BOXES

5.1 Boxes

In this chapter we shall look at boxes. Boxes are containers for pieces of horizontal or vertical
lists. Boxes that are needed more than once can be stored in box registers.

When TgX expects a (box), any of the following forms is admissible:

\hbox(box specification){(horizontal material)}
\vbox(box specification){(vertical material)}
\vtop(box specification){(vertical material)}
\box(8-bit number)

\copy(8-bit number)

\vsplit(8-bit number)to(dimen)

\lastbox

A (box specification) is defined as

(box specification) — (filler)
| to (dimen)(filler) | spread (dimen)(filler)

An (8-bit number) is a number in the range 0-255.

The braces surrounding box material define a group; they can be explicit characters of categories
1 and 2 respectively, or control sequences \let to such characters; see also below.

A (box) can in general be used in horizontal, vertical, and math mode, but see below for the
\lastbox. The connection between boxes and modes is explored further in Chapter 6.

The box produced by \vcenter — a command that is allowed only in math mode — is not a (box).
For instance, it can not be assigned with \setbox; see further Chapter 23.

The \vsplit operation is treated in Chapter 27.

5.2 Box registers

There are 256 box registers, numbered 0—255. Either a box register is empty (‘void’), or it contains
a horizontal or vertical box. This section discusses specifically box registers; the sizes of boxes,
and the way material is arranged inside them, is treated below.

5.2.1 Allocation: \newbox

The plain TEX \newbox macro allocates an unused box register:

\newbox\MyBox

after which one can say

\setbox\MyBox=. ..

or

\box\MyBox

and so on. Subsequent calls to this macro give subsequent box numbers; this way macro collections
can allocate their own boxes without fear of collision with other macros.

The number of the box is assigned by \chardef (see Chapter 31). This implies that \MyBox is
equivalent to, and can be used as, a (number). The control sequence \newbox is an \outer macro.
Newly allocated box registers are initially empty.

60 Victor Eijkhout — TgX by Topic

5.2. BOX REGISTERS

5.2.2 Usage: \setbox, \box, \copy

A register is filled by assigning a (box) to it:
\setbox(number) (equals)(box)
For example, the (box) can be explicit
\setbox37=\hbox{...} or \setbox37=\vbox{...}
or it can be a box register:
\setbox37=\box38
Usually, box numbers will have been assigned by a \newbox command.
The box in a box register is appended by the commands \box and \copy to whatever list TgX is
building: the call
\box38

appends box 38. To save memory space, box registers become empty by using them: TEX assumes
that after you have inserted a box by calling \boxnn in some mode, you do not need the contents
of that register any more and empties it. In case you do need the contents of a box register more
than once, you can \copy it. Calling \copynn is equivalent to \boxnn in all respects except that
the register is not cleared.

It is possible to unwrap the contents of a box register by ‘unboxing’ it using the commands \unhbox
and \unvbox, and their copying versions \unhcopy and \unvcopy. Whereas a box can be used in
any mode, the unboxing operations can only be used in the appropriate mode, since in effect they
contribute a partial horizontal or vertical list (see also Chapter 6). See below for more information
on unboxing registers.

5.2.3 Testing: \ifvoid, \ifhbox, \ifvbox

Box registers can be tested for their contents:
\ifvoid(number)
is true if the box register is empty. Note that an empty, or ‘void’, box register is not the same as a
register containing an empty box. An empty box is still either a horizontal or a vertical box; a void
register can be used as both.
The test
\ifhbox(number)
is true if the box register contains a horizontal box;
\ifvbox(number)
is true if the box register contains a vertical box. Both tests are false for void registers.

5.24 The \lastbox

When TgX has built a partial list, the last box in this list is accessible as the \lastbox. This
behaves like a box register, so you can remove the last box from the list by assigning the \lastbox
to some box register. If the last item on the current list is not a box, the \1lastbox acts like a void
box register. It is not possible to get hold of the last box in the case of the main vertical list. The
\lastbox is then always void.

As an example, the statement

Victor Eijkhout — TgX by Topic 61

CHAPTER 5. BOXES

{\setbox0=\1lastbox}

removes the last box from the current list, assigning it to box register 0. Since this assignment
occurs inside a group, the register is cleared at the end of the group. At the start of a paragraph
this can be used to remove the indentation box (see Chapter 16). Another example of \lastbox
can be found on page 72.

Because the \lastbox is always empty in external vertical mode, it is not possible to get hold of
boxes that have been added to the page. However, it is possible to dissect the page once it is in
\box255, for instance doing

\vbox{\unvbox255{\setbox0=\1lastbox}}
inside the output routine.
If boxes in vertical mode have been shifted by \moveright or \moveleft, or if boxes in horizontal

mode have been raised by \raise or lowered by \lower, any information about this displacement
due to such a command is lost when the \1lastbox is taken from the list.

5.3 Natural dimensions of boxes
5.3.1 Dimensions of created horizontal boxes

Inside an \hbox all constituents are lined up next to each other, with their reference points on the
baseline of the box, unless they are moved explicitly in the vertical direction by \lower or \raise.
The resulting width of the box is the sum of the widths of the components. Thus the width of
\hbox{\hskiplcm}
is positive, and the width of
\hbox{\hskip-1cm}
is negative. By way of example,

a\hbox{\kern-lem b}--
gives as output

ba-
which shows that a horizontal box can have negative width.

The height and depth of an \hbox are the maximum amount that constituent boxes project above
and below the baseline of the box. They are non-negative when the box is created.

The commands \lower and \raise are the only possibilities for vertical movement inside an \hbox
(other than including a \vbox inside the \hbox, of course); a (vertical command) — such as \vskip —
is not allowed in a horizontal box, and \par, although allowed, does not do anything inside a
horizontal box.

5.3.2 Dimensions of created vertical boxes

Inside a \vbox vertical material is lined up with the reference points on the vertical line through
the reference point of the box, unless components are moved explicitly in the horizontal direction
by \moveleft or \moveright.

62 Victor Eijkhout — TgX by Topic

5.3. NATURAL DIMENSIONS OF BOXES

The reference point of a vertical box is always located at the left boundary of the box. The width of
a vertical box is then the maximal amount that any material in the box sticks to the right of the
reference point. Material to the left of the reference point is not taken into account in the width.
Thus the result of

a\vbox{\hbox{\kern-iem b}}--
is

ba—
This should be contrasted with the above example.

The calculation of height and depth is different for vertical boxes constructed by \vbox and \vtop.
The ground rule is that a \vbox has a reference point that lies on the baseline of its last component,
and a \vtop has its reference point on the baseline of the first component. In general, the depth
(height) of a \vbox (\vtop) can be non-zero if the last (first) item is a box or rule.

The height of a \vbox is then the sum of the heights and depths of all components except the last,
plus the height of that last component; the depth of the \vbox is the depth of its last component.
The depth of a \vtop is the sum of the depth of the first component and the heights and depths of
all subsequent material; its height is the height of the first component.

However, the actual rules are a bit more complicated when the first component of a \vtop or the
last component of a \vbox is not a box or rule. If the last component of a \vbox is a kern or a glue,
the depth of that box is zero; a \vtop’s height is zero unless its first component is a box or rule.
(Note the asymmetry in these definitions; see below for an example illustrating this.) The depth
of a \vtop, then, is equal to the total height plus depth of all enclosed material minus the height
of the \vtop.

There is a limit on the depth of vertical boxes: if the depth of a \vbox or \vtop calculated by the
above rules would exceed \boxdepth, the reference point of the box is moved down by the excess
amount. More precisely, the excess depth is added to the natural height of the box. If the box had
a to or spread specification, any glue is set anew to take the new height into account.

Ordinarily, \boxmaxdepth is set to the maximum dimension possible in TEX. It is for instance
reduced during some of the calculations in the plain TEX output routine; see Chapter 28.

5.3.3 Examples
Horizontal boxes are relatively straightforward. Their width is the distance between the ‘begin-
ning’ and the ‘end’ of the box, and consequently the width is not necessarily positive. With
\setbox0=\hbox{aa} \setboxl=\hbox{\copyO \hskip-\wd0}
the \box1 has width zero;

/\box1l/ gives YAd
The height and depth of a horizontal box cannot be negative: in

\setbox0=\hbox{\vrule height 5pt depth 5pt}
\setbox1=\hbox{\raise 10pt \box0}

the \box1 has depth Opt and height 15pt

Vertical boxes are more troublesome than horizontal boxes. Let us first treat their width. After
\setbox0=\hbox{\hskip 10pt}

Victor Eijkhout — TgX by Topic 63

CHAPTER 5. BOXES

the box in the \box0 register has a width of 10pt. Defining
\setbox1=\vbox{\moveleft 5pt \copyO}

the \box1 will have width 5pt; material to the left of the reference point is not accounted for in
the width of a vertical box. With

\setbox2=\vbox{\moveright 5pt \copyO}
the \box2 will have width 15pt.

The depth of a \vbox is the depth of the last item if that is a box, so
\vbox{\vskip 5pt \hbox{\vrule height 5pt depth 5ptl}}

has height 10pt and depth 5pt, and

\vbox{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

has height Opt and depth 5pt. With a glue or kern as the last item in the box, the resulting depth
is zero, so

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip 5pt}

has height 15pt and depth Opt;

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip -5pt}

has height 5pt and depth Opt.

The height of a \vtop behaves (almost) the same with respect to the first item of the box, as the

depth of a \vbox does with respect to the last item. Repeating the above examples with a \vtop
gives the following:

\vtop{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}
has height Opt and depth 15pt, and

\vtop{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}
has height Opt and depth 5pt;

\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip 5pt}
has height 5pt and depth 10pt, and

\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip -5pt}
has height 5pt and depth Opt.

54 More about box dimensions
5.4.1 Predetermined dimensions

The size of a box can be specified in advance with a (box specification); see above for the syntax.
Any glue in the box is then set in order to reach the required size. Prescribing the size of the box
is done by
\hbox to (dimen) {.. .2}, \vbox to (dimen) {...?}

If stretchable or shrinkable glue is present in the box, it is stretched or shrunk in order to give
the box the specified size. Associated with this glue setting is a badness value (see Chapter 8). If
no stretch or shrink — whichever is necessary — is present, the resulting box will be underfull or
overfull respectively. Error reporting for over/underfull boxes is treated below.

Another command to let a box have a size other than the natural size is

64 Victor Eijkhout — TgX by Topic

5.4. MORE ABOUT BOX DIMENSIONS

\hbox spread (dimen) {. ..}, \vbox spread (dimen) {...}

which tells TEX to set the glue in such a way that the size of the box is a specified amount more
than the natural size.

Box specifications for \vtop vertical boxes are somewhat difficult to interpret. TgX constructs a
\vtop by first making a \vbox, including glue settings induced by a (box specification); then it
computes the height and depth by the above rules. Glue setting is described in Chapter 8.

5.4.2 Changes to box dimensions

The dimensions of a box register are accessible by the commands \ht, \dp, and \wd; for instance
\dp13 gives the depth of box 13. However, not only can boxes be measured this way; by assigning
values to these dimensions TEX can even be fooled into thinking that a box has a size different
from its actual. However, changing the dimensions of a box does not change anything about the
contents; in particular it does not change the way the glue is set.

Various formats use this in ‘smash’ macros: the macro defined by
\def\smash#1{{\setbox0=\hbox{#1}\dp0=0pt \ht0=0Opt \boxO\relax}}

places its argument but annihilates its height and depth; that is, the output does show the whole
box, but further calculations by TEX act as if the height and depth were zero.

Box dimensions can be changed only by setting them. They are (box dimen)s, which can only be
set in a (box size assignment), and not, for instance changed with \advance.

Note that a (box size assignment) is a (global assignment) its effect transcends any groups in
which it occurs (see Chapter 10). Thus the output of

\setbox0=\hbox{---} {\wd0=0pt} a\boxOb

is ‘ab-".

The limits that hold on the dimensions with which a box can be created (see above) do not hold

for explicit changes to the size of a box: the assignment \dp0O=-2pt for a horizontal box is perfectly
admissible.

5.4.3 Moving boxes around

In a horizontal box all constituent elements are lined up with their reference points at the same
height as t