LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <sys/resource.h>
29 #include <sys/syscall.h>
30 #include <sys/time.h>
31 #include <sys/times.h>
32 #include <unistd.h>
33 
34 #if KMP_OS_LINUX && !KMP_OS_CNK
35 #include <sys/sysinfo.h>
36 #if KMP_USE_FUTEX
37 // We should really include <futex.h>, but that causes compatibility problems on
38 // different Linux* OS distributions that either require that you include (or
39 // break when you try to include) <pci/types.h>. Since all we need is the two
40 // macros below (which are part of the kernel ABI, so can't change) we just
41 // define the constants here and don't include <futex.h>
42 #ifndef FUTEX_WAIT
43 #define FUTEX_WAIT 0
44 #endif
45 #ifndef FUTEX_WAKE
46 #define FUTEX_WAKE 1
47 #endif
48 #endif
49 #elif KMP_OS_DARWIN
50 #include <mach/mach.h>
51 #include <sys/sysctl.h>
52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
53 #include <pthread_np.h>
54 #elif KMP_OS_NETBSD
55 #include <sys/types.h>
56 #include <sys/sysctl.h>
57 #endif
58 
59 #include <ctype.h>
60 #include <dirent.h>
61 #include <fcntl.h>
62 
63 #include "tsan_annotations.h"
64 
65 struct kmp_sys_timer {
66  struct timespec start;
67 };
68 
69 // Convert timespec to nanoseconds.
70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec)
71 
72 static struct kmp_sys_timer __kmp_sys_timer_data;
73 
74 #if KMP_HANDLE_SIGNALS
75 typedef void (*sig_func_t)(int);
76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
77 static sigset_t __kmp_sigset;
78 #endif
79 
80 static int __kmp_init_runtime = FALSE;
81 
82 static int __kmp_fork_count = 0;
83 
84 static pthread_condattr_t __kmp_suspend_cond_attr;
85 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
86 
87 static kmp_cond_align_t __kmp_wait_cv;
88 static kmp_mutex_align_t __kmp_wait_mx;
89 
90 kmp_uint64 __kmp_ticks_per_msec = 1000000;
91 
92 #ifdef DEBUG_SUSPEND
93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
94  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
95  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
96  cond->c_cond.__c_waiting);
97 }
98 #endif
99 
100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED)
101 
102 /* Affinity support */
103 
104 void __kmp_affinity_bind_thread(int which) {
105  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
106  "Illegal set affinity operation when not capable");
107 
108  kmp_affin_mask_t *mask;
109  KMP_CPU_ALLOC_ON_STACK(mask);
110  KMP_CPU_ZERO(mask);
111  KMP_CPU_SET(which, mask);
112  __kmp_set_system_affinity(mask, TRUE);
113  KMP_CPU_FREE_FROM_STACK(mask);
114 }
115 
116 /* Determine if we can access affinity functionality on this version of
117  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
118  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
119 void __kmp_affinity_determine_capable(const char *env_var) {
120 // Check and see if the OS supports thread affinity.
121 
122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
123 
124  int gCode;
125  int sCode;
126  unsigned char *buf;
127  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
128 
129  // If Linux* OS:
130  // If the syscall fails or returns a suggestion for the size,
131  // then we don't have to search for an appropriate size.
132  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
133  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
134  "initial getaffinity call returned %d errno = %d\n",
135  gCode, errno));
136 
137  // if ((gCode < 0) && (errno == ENOSYS))
138  if (gCode < 0) {
139  // System call not supported
140  if (__kmp_affinity_verbose ||
141  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
142  (__kmp_affinity_type != affinity_default) &&
143  (__kmp_affinity_type != affinity_disabled))) {
144  int error = errno;
145  kmp_msg_t err_code = KMP_ERR(error);
146  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
147  err_code, __kmp_msg_null);
148  if (__kmp_generate_warnings == kmp_warnings_off) {
149  __kmp_str_free(&err_code.str);
150  }
151  }
152  KMP_AFFINITY_DISABLE();
153  KMP_INTERNAL_FREE(buf);
154  return;
155  }
156  if (gCode > 0) { // Linux* OS only
157  // The optimal situation: the OS returns the size of the buffer it expects.
158  //
159  // A verification of correct behavior is that Isetaffinity on a NULL
160  // buffer with the same size fails with errno set to EFAULT.
161  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
162  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
163  "setaffinity for mask size %d returned %d errno = %d\n",
164  gCode, sCode, errno));
165  if (sCode < 0) {
166  if (errno == ENOSYS) {
167  if (__kmp_affinity_verbose ||
168  (__kmp_affinity_warnings &&
169  (__kmp_affinity_type != affinity_none) &&
170  (__kmp_affinity_type != affinity_default) &&
171  (__kmp_affinity_type != affinity_disabled))) {
172  int error = errno;
173  kmp_msg_t err_code = KMP_ERR(error);
174  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
175  err_code, __kmp_msg_null);
176  if (__kmp_generate_warnings == kmp_warnings_off) {
177  __kmp_str_free(&err_code.str);
178  }
179  }
180  KMP_AFFINITY_DISABLE();
181  KMP_INTERNAL_FREE(buf);
182  }
183  if (errno == EFAULT) {
184  KMP_AFFINITY_ENABLE(gCode);
185  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
186  "affinity supported (mask size %d)\n",
187  (int)__kmp_affin_mask_size));
188  KMP_INTERNAL_FREE(buf);
189  return;
190  }
191  }
192  }
193 
194  // Call the getaffinity system call repeatedly with increasing set sizes
195  // until we succeed, or reach an upper bound on the search.
196  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
197  "searching for proper set size\n"));
198  int size;
199  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
200  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
201  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
202  "getaffinity for mask size %d returned %d errno = %d\n",
203  size, gCode, errno));
204 
205  if (gCode < 0) {
206  if (errno == ENOSYS) {
207  // We shouldn't get here
208  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
209  "inconsistent OS call behavior: errno == ENOSYS for mask "
210  "size %d\n",
211  size));
212  if (__kmp_affinity_verbose ||
213  (__kmp_affinity_warnings &&
214  (__kmp_affinity_type != affinity_none) &&
215  (__kmp_affinity_type != affinity_default) &&
216  (__kmp_affinity_type != affinity_disabled))) {
217  int error = errno;
218  kmp_msg_t err_code = KMP_ERR(error);
219  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
220  err_code, __kmp_msg_null);
221  if (__kmp_generate_warnings == kmp_warnings_off) {
222  __kmp_str_free(&err_code.str);
223  }
224  }
225  KMP_AFFINITY_DISABLE();
226  KMP_INTERNAL_FREE(buf);
227  return;
228  }
229  continue;
230  }
231 
232  sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
233  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
234  "setaffinity for mask size %d returned %d errno = %d\n",
235  gCode, sCode, errno));
236  if (sCode < 0) {
237  if (errno == ENOSYS) { // Linux* OS only
238  // We shouldn't get here
239  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
240  "inconsistent OS call behavior: errno == ENOSYS for mask "
241  "size %d\n",
242  size));
243  if (__kmp_affinity_verbose ||
244  (__kmp_affinity_warnings &&
245  (__kmp_affinity_type != affinity_none) &&
246  (__kmp_affinity_type != affinity_default) &&
247  (__kmp_affinity_type != affinity_disabled))) {
248  int error = errno;
249  kmp_msg_t err_code = KMP_ERR(error);
250  __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
251  err_code, __kmp_msg_null);
252  if (__kmp_generate_warnings == kmp_warnings_off) {
253  __kmp_str_free(&err_code.str);
254  }
255  }
256  KMP_AFFINITY_DISABLE();
257  KMP_INTERNAL_FREE(buf);
258  return;
259  }
260  if (errno == EFAULT) {
261  KMP_AFFINITY_ENABLE(gCode);
262  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
263  "affinity supported (mask size %d)\n",
264  (int)__kmp_affin_mask_size));
265  KMP_INTERNAL_FREE(buf);
266  return;
267  }
268  }
269  }
270  // save uncaught error code
271  // int error = errno;
272  KMP_INTERNAL_FREE(buf);
273  // restore uncaught error code, will be printed at the next KMP_WARNING below
274  // errno = error;
275 
276  // Affinity is not supported
277  KMP_AFFINITY_DISABLE();
278  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
279  "cannot determine mask size - affinity not supported\n"));
280  if (__kmp_affinity_verbose ||
281  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
282  (__kmp_affinity_type != affinity_default) &&
283  (__kmp_affinity_type != affinity_disabled))) {
284  KMP_WARNING(AffCantGetMaskSize, env_var);
285  }
286 }
287 
288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
289 
290 #if KMP_USE_FUTEX
291 
292 int __kmp_futex_determine_capable() {
293  int loc = 0;
294  int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
295  int retval = (rc == 0) || (errno != ENOSYS);
296 
297  KA_TRACE(10,
298  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
299  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
300  retval ? "" : " not"));
301 
302  return retval;
303 }
304 
305 #endif // KMP_USE_FUTEX
306 
307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
309  use compare_and_store for these routines */
310 
311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
312  kmp_int8 old_value, new_value;
313 
314  old_value = TCR_1(*p);
315  new_value = old_value | d;
316 
317  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
318  KMP_CPU_PAUSE();
319  old_value = TCR_1(*p);
320  new_value = old_value | d;
321  }
322  return old_value;
323 }
324 
325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
326  kmp_int8 old_value, new_value;
327 
328  old_value = TCR_1(*p);
329  new_value = old_value & d;
330 
331  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
332  KMP_CPU_PAUSE();
333  old_value = TCR_1(*p);
334  new_value = old_value & d;
335  }
336  return old_value;
337 }
338 
339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
340  kmp_uint32 old_value, new_value;
341 
342  old_value = TCR_4(*p);
343  new_value = old_value | d;
344 
345  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
346  KMP_CPU_PAUSE();
347  old_value = TCR_4(*p);
348  new_value = old_value | d;
349  }
350  return old_value;
351 }
352 
353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
354  kmp_uint32 old_value, new_value;
355 
356  old_value = TCR_4(*p);
357  new_value = old_value & d;
358 
359  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
360  KMP_CPU_PAUSE();
361  old_value = TCR_4(*p);
362  new_value = old_value & d;
363  }
364  return old_value;
365 }
366 
367 #if KMP_ARCH_X86
368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
369  kmp_int8 old_value, new_value;
370 
371  old_value = TCR_1(*p);
372  new_value = old_value + d;
373 
374  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
375  KMP_CPU_PAUSE();
376  old_value = TCR_1(*p);
377  new_value = old_value + d;
378  }
379  return old_value;
380 }
381 
382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
383  kmp_int64 old_value, new_value;
384 
385  old_value = TCR_8(*p);
386  new_value = old_value + d;
387 
388  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
389  KMP_CPU_PAUSE();
390  old_value = TCR_8(*p);
391  new_value = old_value + d;
392  }
393  return old_value;
394 }
395 #endif /* KMP_ARCH_X86 */
396 
397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
398  kmp_uint64 old_value, new_value;
399 
400  old_value = TCR_8(*p);
401  new_value = old_value | d;
402  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
403  KMP_CPU_PAUSE();
404  old_value = TCR_8(*p);
405  new_value = old_value | d;
406  }
407  return old_value;
408 }
409 
410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
411  kmp_uint64 old_value, new_value;
412 
413  old_value = TCR_8(*p);
414  new_value = old_value & d;
415  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416  KMP_CPU_PAUSE();
417  old_value = TCR_8(*p);
418  new_value = old_value & d;
419  }
420  return old_value;
421 }
422 
423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
424 
425 void __kmp_terminate_thread(int gtid) {
426  int status;
427  kmp_info_t *th = __kmp_threads[gtid];
428 
429  if (!th)
430  return;
431 
432 #ifdef KMP_CANCEL_THREADS
433  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
434  status = pthread_cancel(th->th.th_info.ds.ds_thread);
435  if (status != 0 && status != ESRCH) {
436  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
437  __kmp_msg_null);
438  }
439 #endif
440  KMP_YIELD(TRUE);
441 } //
442 
443 /* Set thread stack info according to values returned by pthread_getattr_np().
444  If values are unreasonable, assume call failed and use incremental stack
445  refinement method instead. Returns TRUE if the stack parameters could be
446  determined exactly, FALSE if incremental refinement is necessary. */
447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
448  int stack_data;
449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
450  KMP_OS_HURD || KMP_OS_KFREEBSD
451  pthread_attr_t attr;
452  int status;
453  size_t size = 0;
454  void *addr = 0;
455 
456  /* Always do incremental stack refinement for ubermaster threads since the
457  initial thread stack range can be reduced by sibling thread creation so
458  pthread_attr_getstack may cause thread gtid aliasing */
459  if (!KMP_UBER_GTID(gtid)) {
460 
461  /* Fetch the real thread attributes */
462  status = pthread_attr_init(&attr);
463  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
465  status = pthread_attr_get_np(pthread_self(), &attr);
466  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
467 #else
468  status = pthread_getattr_np(pthread_self(), &attr);
469  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
470 #endif
471  status = pthread_attr_getstack(&attr, &addr, &size);
472  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
473  KA_TRACE(60,
474  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
475  " %lu, low addr: %p\n",
476  gtid, size, addr));
477  status = pthread_attr_destroy(&attr);
478  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
479  }
480 
481  if (size != 0 && addr != 0) { // was stack parameter determination successful?
482  /* Store the correct base and size */
483  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
484  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
485  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
486  return TRUE;
487  }
488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
489  KMP_OS_HURD */
490  /* Use incremental refinement starting from initial conservative estimate */
491  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
492  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
493  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
494  return FALSE;
495 }
496 
497 static void *__kmp_launch_worker(void *thr) {
498  int status, old_type, old_state;
499 #ifdef KMP_BLOCK_SIGNALS
500  sigset_t new_set, old_set;
501 #endif /* KMP_BLOCK_SIGNALS */
502  void *exit_val;
503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
504  KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
505  void *volatile padding = 0;
506 #endif
507  int gtid;
508 
509  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
510  __kmp_gtid_set_specific(gtid);
511 #ifdef KMP_TDATA_GTID
512  __kmp_gtid = gtid;
513 #endif
514 #if KMP_STATS_ENABLED
515  // set thread local index to point to thread-specific stats
516  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
517  __kmp_stats_thread_ptr->startLife();
518  KMP_SET_THREAD_STATE(IDLE);
519  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
520 #endif
521 
522 #if USE_ITT_BUILD
523  __kmp_itt_thread_name(gtid);
524 #endif /* USE_ITT_BUILD */
525 
526 #if KMP_AFFINITY_SUPPORTED
527  __kmp_affinity_set_init_mask(gtid, FALSE);
528 #endif
529 
530 #ifdef KMP_CANCEL_THREADS
531  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
532  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
533  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
534  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
535  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
536 #endif
537 
538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
539  // Set FP control regs to be a copy of the parallel initialization thread's.
540  __kmp_clear_x87_fpu_status_word();
541  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
542  __kmp_load_mxcsr(&__kmp_init_mxcsr);
543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
544 
545 #ifdef KMP_BLOCK_SIGNALS
546  status = sigfillset(&new_set);
547  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
548  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
549  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
550 #endif /* KMP_BLOCK_SIGNALS */
551 
552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
553  KMP_OS_OPENBSD
554  if (__kmp_stkoffset > 0 && gtid > 0) {
555  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
556  }
557 #endif
558 
559  KMP_MB();
560  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
561 
562  __kmp_check_stack_overlap((kmp_info_t *)thr);
563 
564  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
565 
566 #ifdef KMP_BLOCK_SIGNALS
567  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
568  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
569 #endif /* KMP_BLOCK_SIGNALS */
570 
571  return exit_val;
572 }
573 
574 #if KMP_USE_MONITOR
575 /* The monitor thread controls all of the threads in the complex */
576 
577 static void *__kmp_launch_monitor(void *thr) {
578  int status, old_type, old_state;
579 #ifdef KMP_BLOCK_SIGNALS
580  sigset_t new_set;
581 #endif /* KMP_BLOCK_SIGNALS */
582  struct timespec interval;
583 
584  KMP_MB(); /* Flush all pending memory write invalidates. */
585 
586  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
587 
588  /* register us as the monitor thread */
589  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
590 #ifdef KMP_TDATA_GTID
591  __kmp_gtid = KMP_GTID_MONITOR;
592 #endif
593 
594  KMP_MB();
595 
596 #if USE_ITT_BUILD
597  // Instruct Intel(R) Threading Tools to ignore monitor thread.
598  __kmp_itt_thread_ignore();
599 #endif /* USE_ITT_BUILD */
600 
601  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
602  (kmp_info_t *)thr);
603 
604  __kmp_check_stack_overlap((kmp_info_t *)thr);
605 
606 #ifdef KMP_CANCEL_THREADS
607  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
608  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
609  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
610  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
611  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
612 #endif
613 
614 #if KMP_REAL_TIME_FIX
615  // This is a potential fix which allows application with real-time scheduling
616  // policy work. However, decision about the fix is not made yet, so it is
617  // disabled by default.
618  { // Are program started with real-time scheduling policy?
619  int sched = sched_getscheduler(0);
620  if (sched == SCHED_FIFO || sched == SCHED_RR) {
621  // Yes, we are a part of real-time application. Try to increase the
622  // priority of the monitor.
623  struct sched_param param;
624  int max_priority = sched_get_priority_max(sched);
625  int rc;
626  KMP_WARNING(RealTimeSchedNotSupported);
627  sched_getparam(0, &param);
628  if (param.sched_priority < max_priority) {
629  param.sched_priority += 1;
630  rc = sched_setscheduler(0, sched, &param);
631  if (rc != 0) {
632  int error = errno;
633  kmp_msg_t err_code = KMP_ERR(error);
634  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
635  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
636  if (__kmp_generate_warnings == kmp_warnings_off) {
637  __kmp_str_free(&err_code.str);
638  }
639  }
640  } else {
641  // We cannot abort here, because number of CPUs may be enough for all
642  // the threads, including the monitor thread, so application could
643  // potentially work...
644  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
645  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
646  __kmp_msg_null);
647  }
648  }
649  // AC: free thread that waits for monitor started
650  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
651  }
652 #endif // KMP_REAL_TIME_FIX
653 
654  KMP_MB(); /* Flush all pending memory write invalidates. */
655 
656  if (__kmp_monitor_wakeups == 1) {
657  interval.tv_sec = 1;
658  interval.tv_nsec = 0;
659  } else {
660  interval.tv_sec = 0;
661  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
662  }
663 
664  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
665 
666  while (!TCR_4(__kmp_global.g.g_done)) {
667  struct timespec now;
668  struct timeval tval;
669 
670  /* This thread monitors the state of the system */
671 
672  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
673 
674  status = gettimeofday(&tval, NULL);
675  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
676  TIMEVAL_TO_TIMESPEC(&tval, &now);
677 
678  now.tv_sec += interval.tv_sec;
679  now.tv_nsec += interval.tv_nsec;
680 
681  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
682  now.tv_sec += 1;
683  now.tv_nsec -= KMP_NSEC_PER_SEC;
684  }
685 
686  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
687  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
688  // AC: the monitor should not fall asleep if g_done has been set
689  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
690  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
691  &__kmp_wait_mx.m_mutex, &now);
692  if (status != 0) {
693  if (status != ETIMEDOUT && status != EINTR) {
694  KMP_SYSFAIL("pthread_cond_timedwait", status);
695  }
696  }
697  }
698  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
699  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
700 
701  TCW_4(__kmp_global.g.g_time.dt.t_value,
702  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
703 
704  KMP_MB(); /* Flush all pending memory write invalidates. */
705  }
706 
707  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
708 
709 #ifdef KMP_BLOCK_SIGNALS
710  status = sigfillset(&new_set);
711  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
712  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
713  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
714 #endif /* KMP_BLOCK_SIGNALS */
715 
716  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
717 
718  if (__kmp_global.g.g_abort != 0) {
719  /* now we need to terminate the worker threads */
720  /* the value of t_abort is the signal we caught */
721 
722  int gtid;
723 
724  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
725  __kmp_global.g.g_abort));
726 
727  /* terminate the OpenMP worker threads */
728  /* TODO this is not valid for sibling threads!!
729  * the uber master might not be 0 anymore.. */
730  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
731  __kmp_terminate_thread(gtid);
732 
733  __kmp_cleanup();
734 
735  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
736  __kmp_global.g.g_abort));
737 
738  if (__kmp_global.g.g_abort > 0)
739  raise(__kmp_global.g.g_abort);
740  }
741 
742  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
743 
744  return thr;
745 }
746 #endif // KMP_USE_MONITOR
747 
748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
749  pthread_t handle;
750  pthread_attr_t thread_attr;
751  int status;
752 
753  th->th.th_info.ds.ds_gtid = gtid;
754 
755 #if KMP_STATS_ENABLED
756  // sets up worker thread stats
757  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
758 
759  // th->th.th_stats is used to transfer thread-specific stats-pointer to
760  // __kmp_launch_worker. So when thread is created (goes into
761  // __kmp_launch_worker) it will set its thread local pointer to
762  // th->th.th_stats
763  if (!KMP_UBER_GTID(gtid)) {
764  th->th.th_stats = __kmp_stats_list->push_back(gtid);
765  } else {
766  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
767  // so set the th->th.th_stats field to it.
768  th->th.th_stats = __kmp_stats_thread_ptr;
769  }
770  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
771 
772 #endif // KMP_STATS_ENABLED
773 
774  if (KMP_UBER_GTID(gtid)) {
775  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
776  th->th.th_info.ds.ds_thread = pthread_self();
777  __kmp_set_stack_info(gtid, th);
778  __kmp_check_stack_overlap(th);
779  return;
780  }
781 
782  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
783 
784  KMP_MB(); /* Flush all pending memory write invalidates. */
785 
786 #ifdef KMP_THREAD_ATTR
787  status = pthread_attr_init(&thread_attr);
788  if (status != 0) {
789  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
790  }
791  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
792  if (status != 0) {
793  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
794  }
795 
796  /* Set stack size for this thread now.
797  The multiple of 2 is there because on some machines, requesting an unusual
798  stacksize causes the thread to have an offset before the dummy alloca()
799  takes place to create the offset. Since we want the user to have a
800  sufficient stacksize AND support a stack offset, we alloca() twice the
801  offset so that the upcoming alloca() does not eliminate any premade offset,
802  and also gives the user the stack space they requested for all threads */
803  stack_size += gtid * __kmp_stkoffset * 2;
804 
805  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
806  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
807  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
808 
809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
810  status = pthread_attr_setstacksize(&thread_attr, stack_size);
811 #ifdef KMP_BACKUP_STKSIZE
812  if (status != 0) {
813  if (!__kmp_env_stksize) {
814  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
815  __kmp_stksize = KMP_BACKUP_STKSIZE;
816  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
817  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
818  "bytes\n",
819  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
820  status = pthread_attr_setstacksize(&thread_attr, stack_size);
821  }
822  }
823 #endif /* KMP_BACKUP_STKSIZE */
824  if (status != 0) {
825  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
826  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
827  }
828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
829 
830 #endif /* KMP_THREAD_ATTR */
831 
832  status =
833  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
834  if (status != 0 || !handle) { // ??? Why do we check handle??
835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
836  if (status == EINVAL) {
837  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
838  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
839  }
840  if (status == ENOMEM) {
841  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
842  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
843  }
844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
845  if (status == EAGAIN) {
846  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
847  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
848  }
849  KMP_SYSFAIL("pthread_create", status);
850  }
851 
852  th->th.th_info.ds.ds_thread = handle;
853 
854 #ifdef KMP_THREAD_ATTR
855  status = pthread_attr_destroy(&thread_attr);
856  if (status) {
857  kmp_msg_t err_code = KMP_ERR(status);
858  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
859  __kmp_msg_null);
860  if (__kmp_generate_warnings == kmp_warnings_off) {
861  __kmp_str_free(&err_code.str);
862  }
863  }
864 #endif /* KMP_THREAD_ATTR */
865 
866  KMP_MB(); /* Flush all pending memory write invalidates. */
867 
868  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
869 
870 } // __kmp_create_worker
871 
872 #if KMP_USE_MONITOR
873 void __kmp_create_monitor(kmp_info_t *th) {
874  pthread_t handle;
875  pthread_attr_t thread_attr;
876  size_t size;
877  int status;
878  int auto_adj_size = FALSE;
879 
880  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
881  // We don't need monitor thread in case of MAX_BLOCKTIME
882  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
883  "MAX blocktime\n"));
884  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
885  th->th.th_info.ds.ds_gtid = 0;
886  return;
887  }
888  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
889 
890  KMP_MB(); /* Flush all pending memory write invalidates. */
891 
892  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
893  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
894 #if KMP_REAL_TIME_FIX
895  TCW_4(__kmp_global.g.g_time.dt.t_value,
896  -1); // Will use it for synchronization a bit later.
897 #else
898  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
899 #endif // KMP_REAL_TIME_FIX
900 
901 #ifdef KMP_THREAD_ATTR
902  if (__kmp_monitor_stksize == 0) {
903  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
904  auto_adj_size = TRUE;
905  }
906  status = pthread_attr_init(&thread_attr);
907  if (status != 0) {
908  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
909  }
910  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
911  if (status != 0) {
912  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
913  }
914 
915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
916  status = pthread_attr_getstacksize(&thread_attr, &size);
917  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
918 #else
919  size = __kmp_sys_min_stksize;
920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
921 #endif /* KMP_THREAD_ATTR */
922 
923  if (__kmp_monitor_stksize == 0) {
924  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
925  }
926  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
927  __kmp_monitor_stksize = __kmp_sys_min_stksize;
928  }
929 
930  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
931  "requested stacksize = %lu bytes\n",
932  size, __kmp_monitor_stksize));
933 
934 retry:
935 
936 /* Set stack size for this thread now. */
937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
938  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
939  __kmp_monitor_stksize));
940  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
941  if (status != 0) {
942  if (auto_adj_size) {
943  __kmp_monitor_stksize *= 2;
944  goto retry;
945  }
946  kmp_msg_t err_code = KMP_ERR(status);
947  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
948  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
949  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
950  if (__kmp_generate_warnings == kmp_warnings_off) {
951  __kmp_str_free(&err_code.str);
952  }
953  }
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 
956  status =
957  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
958 
959  if (status != 0) {
960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
961  if (status == EINVAL) {
962  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
963  __kmp_monitor_stksize *= 2;
964  goto retry;
965  }
966  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
967  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
968  __kmp_msg_null);
969  }
970  if (status == ENOMEM) {
971  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
972  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
973  __kmp_msg_null);
974  }
975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
976  if (status == EAGAIN) {
977  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
978  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
979  }
980  KMP_SYSFAIL("pthread_create", status);
981  }
982 
983  th->th.th_info.ds.ds_thread = handle;
984 
985 #if KMP_REAL_TIME_FIX
986  // Wait for the monitor thread is really started and set its *priority*.
987  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
988  sizeof(__kmp_global.g.g_time.dt.t_value));
989  __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
990  &__kmp_neq_4, NULL);
991 #endif // KMP_REAL_TIME_FIX
992 
993 #ifdef KMP_THREAD_ATTR
994  status = pthread_attr_destroy(&thread_attr);
995  if (status != 0) {
996  kmp_msg_t err_code = KMP_ERR(status);
997  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
998  __kmp_msg_null);
999  if (__kmp_generate_warnings == kmp_warnings_off) {
1000  __kmp_str_free(&err_code.str);
1001  }
1002  }
1003 #endif
1004 
1005  KMP_MB(); /* Flush all pending memory write invalidates. */
1006 
1007  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1008  th->th.th_info.ds.ds_thread));
1009 
1010 } // __kmp_create_monitor
1011 #endif // KMP_USE_MONITOR
1012 
1013 void __kmp_exit_thread(int exit_status) {
1014  pthread_exit((void *)(intptr_t)exit_status);
1015 } // __kmp_exit_thread
1016 
1017 #if KMP_USE_MONITOR
1018 void __kmp_resume_monitor();
1019 
1020 void __kmp_reap_monitor(kmp_info_t *th) {
1021  int status;
1022  void *exit_val;
1023 
1024  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1025  " %#.8lx\n",
1026  th->th.th_info.ds.ds_thread));
1027 
1028  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1029  // If both tid and gtid are 0, it means the monitor did not ever start.
1030  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1031  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1032  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1033  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1034  return;
1035  }
1036 
1037  KMP_MB(); /* Flush all pending memory write invalidates. */
1038 
1039  /* First, check to see whether the monitor thread exists to wake it up. This
1040  is to avoid performance problem when the monitor sleeps during
1041  blocktime-size interval */
1042 
1043  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1044  if (status != ESRCH) {
1045  __kmp_resume_monitor(); // Wake up the monitor thread
1046  }
1047  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1048  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1049  if (exit_val != th) {
1050  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1051  }
1052 
1053  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1054  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1055 
1056  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1057  " %#.8lx\n",
1058  th->th.th_info.ds.ds_thread));
1059 
1060  KMP_MB(); /* Flush all pending memory write invalidates. */
1061 }
1062 #endif // KMP_USE_MONITOR
1063 
1064 void __kmp_reap_worker(kmp_info_t *th) {
1065  int status;
1066  void *exit_val;
1067 
1068  KMP_MB(); /* Flush all pending memory write invalidates. */
1069 
1070  KA_TRACE(
1071  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1072 
1073  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1074 #ifdef KMP_DEBUG
1075  /* Don't expose these to the user until we understand when they trigger */
1076  if (status != 0) {
1077  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1078  }
1079  if (exit_val != th) {
1080  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1081  "exit_val = %p\n",
1082  th->th.th_info.ds.ds_gtid, exit_val));
1083  }
1084 #endif /* KMP_DEBUG */
1085 
1086  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1087  th->th.th_info.ds.ds_gtid));
1088 
1089  KMP_MB(); /* Flush all pending memory write invalidates. */
1090 }
1091 
1092 #if KMP_HANDLE_SIGNALS
1093 
1094 static void __kmp_null_handler(int signo) {
1095  // Do nothing, for doing SIG_IGN-type actions.
1096 } // __kmp_null_handler
1097 
1098 static void __kmp_team_handler(int signo) {
1099  if (__kmp_global.g.g_abort == 0) {
1100 /* Stage 1 signal handler, let's shut down all of the threads */
1101 #ifdef KMP_DEBUG
1102  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1103 #endif
1104  switch (signo) {
1105  case SIGHUP:
1106  case SIGINT:
1107  case SIGQUIT:
1108  case SIGILL:
1109  case SIGABRT:
1110  case SIGFPE:
1111  case SIGBUS:
1112  case SIGSEGV:
1113 #ifdef SIGSYS
1114  case SIGSYS:
1115 #endif
1116  case SIGTERM:
1117  if (__kmp_debug_buf) {
1118  __kmp_dump_debug_buffer();
1119  }
1120  KMP_MB(); // Flush all pending memory write invalidates.
1121  TCW_4(__kmp_global.g.g_abort, signo);
1122  KMP_MB(); // Flush all pending memory write invalidates.
1123  TCW_4(__kmp_global.g.g_done, TRUE);
1124  KMP_MB(); // Flush all pending memory write invalidates.
1125  break;
1126  default:
1127 #ifdef KMP_DEBUG
1128  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1129 #endif
1130  break;
1131  }
1132  }
1133 } // __kmp_team_handler
1134 
1135 static void __kmp_sigaction(int signum, const struct sigaction *act,
1136  struct sigaction *oldact) {
1137  int rc = sigaction(signum, act, oldact);
1138  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1139 }
1140 
1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1142  int parallel_init) {
1143  KMP_MB(); // Flush all pending memory write invalidates.
1144  KB_TRACE(60,
1145  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1146  if (parallel_init) {
1147  struct sigaction new_action;
1148  struct sigaction old_action;
1149  new_action.sa_handler = handler_func;
1150  new_action.sa_flags = 0;
1151  sigfillset(&new_action.sa_mask);
1152  __kmp_sigaction(sig, &new_action, &old_action);
1153  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1154  sigaddset(&__kmp_sigset, sig);
1155  } else {
1156  // Restore/keep user's handler if one previously installed.
1157  __kmp_sigaction(sig, &old_action, NULL);
1158  }
1159  } else {
1160  // Save initial/system signal handlers to see if user handlers installed.
1161  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1162  }
1163  KMP_MB(); // Flush all pending memory write invalidates.
1164 } // __kmp_install_one_handler
1165 
1166 static void __kmp_remove_one_handler(int sig) {
1167  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1168  if (sigismember(&__kmp_sigset, sig)) {
1169  struct sigaction old;
1170  KMP_MB(); // Flush all pending memory write invalidates.
1171  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1172  if ((old.sa_handler != __kmp_team_handler) &&
1173  (old.sa_handler != __kmp_null_handler)) {
1174  // Restore the users signal handler.
1175  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1176  "restoring: sig=%d\n",
1177  sig));
1178  __kmp_sigaction(sig, &old, NULL);
1179  }
1180  sigdelset(&__kmp_sigset, sig);
1181  KMP_MB(); // Flush all pending memory write invalidates.
1182  }
1183 } // __kmp_remove_one_handler
1184 
1185 void __kmp_install_signals(int parallel_init) {
1186  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1187  if (__kmp_handle_signals || !parallel_init) {
1188  // If ! parallel_init, we do not install handlers, just save original
1189  // handlers. Let us do it even __handle_signals is 0.
1190  sigemptyset(&__kmp_sigset);
1191  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1192  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1193  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1194  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1195  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1196  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1197  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1198  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1199 #ifdef SIGSYS
1200  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1201 #endif // SIGSYS
1202  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1203 #ifdef SIGPIPE
1204  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1205 #endif // SIGPIPE
1206  }
1207 } // __kmp_install_signals
1208 
1209 void __kmp_remove_signals(void) {
1210  int sig;
1211  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1212  for (sig = 1; sig < NSIG; ++sig) {
1213  __kmp_remove_one_handler(sig);
1214  }
1215 } // __kmp_remove_signals
1216 
1217 #endif // KMP_HANDLE_SIGNALS
1218 
1219 void __kmp_enable(int new_state) {
1220 #ifdef KMP_CANCEL_THREADS
1221  int status, old_state;
1222  status = pthread_setcancelstate(new_state, &old_state);
1223  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1224  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1225 #endif
1226 }
1227 
1228 void __kmp_disable(int *old_state) {
1229 #ifdef KMP_CANCEL_THREADS
1230  int status;
1231  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1232  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1233 #endif
1234 }
1235 
1236 static void __kmp_atfork_prepare(void) {
1237  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1238  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1239 }
1240 
1241 static void __kmp_atfork_parent(void) {
1242  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1243  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1244 }
1245 
1246 /* Reset the library so execution in the child starts "all over again" with
1247  clean data structures in initial states. Don't worry about freeing memory
1248  allocated by parent, just abandon it to be safe. */
1249 static void __kmp_atfork_child(void) {
1250  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1251  /* TODO make sure this is done right for nested/sibling */
1252  // ATT: Memory leaks are here? TODO: Check it and fix.
1253  /* KMP_ASSERT( 0 ); */
1254 
1255  ++__kmp_fork_count;
1256 
1257 #if KMP_AFFINITY_SUPPORTED
1258 #if KMP_OS_LINUX
1259  // reset the affinity in the child to the initial thread
1260  // affinity in the parent
1261  kmp_set_thread_affinity_mask_initial();
1262 #endif
1263  // Set default not to bind threads tightly in the child (we’re expecting
1264  // over-subscription after the fork and this can improve things for
1265  // scripting languages that use OpenMP inside process-parallel code).
1266  __kmp_affinity_type = affinity_none;
1267 #if OMP_40_ENABLED
1268  if (__kmp_nested_proc_bind.bind_types != NULL) {
1269  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1270  }
1271 #endif // OMP_40_ENABLED
1272 #endif // KMP_AFFINITY_SUPPORTED
1273 
1274  __kmp_init_runtime = FALSE;
1275 #if KMP_USE_MONITOR
1276  __kmp_init_monitor = 0;
1277 #endif
1278  __kmp_init_parallel = FALSE;
1279  __kmp_init_middle = FALSE;
1280  __kmp_init_serial = FALSE;
1281  TCW_4(__kmp_init_gtid, FALSE);
1282  __kmp_init_common = FALSE;
1283 
1284  TCW_4(__kmp_init_user_locks, FALSE);
1285 #if !KMP_USE_DYNAMIC_LOCK
1286  __kmp_user_lock_table.used = 1;
1287  __kmp_user_lock_table.allocated = 0;
1288  __kmp_user_lock_table.table = NULL;
1289  __kmp_lock_blocks = NULL;
1290 #endif
1291 
1292  __kmp_all_nth = 0;
1293  TCW_4(__kmp_nth, 0);
1294 
1295  __kmp_thread_pool = NULL;
1296  __kmp_thread_pool_insert_pt = NULL;
1297  __kmp_team_pool = NULL;
1298 
1299  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1300  here so threadprivate doesn't use stale data */
1301  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1302  __kmp_threadpriv_cache_list));
1303 
1304  while (__kmp_threadpriv_cache_list != NULL) {
1305 
1306  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1307  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1308  &(*__kmp_threadpriv_cache_list->addr)));
1309 
1310  *__kmp_threadpriv_cache_list->addr = NULL;
1311  }
1312  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1313  }
1314 
1315  __kmp_init_runtime = FALSE;
1316 
1317  /* reset statically initialized locks */
1318  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1319  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1320  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1321  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1322 
1323 #if USE_ITT_BUILD
1324  __kmp_itt_reset(); // reset ITT's global state
1325 #endif /* USE_ITT_BUILD */
1326 
1327  /* This is necessary to make sure no stale data is left around */
1328  /* AC: customers complain that we use unsafe routines in the atfork
1329  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1330  in dynamic_link when check the presence of shared tbbmalloc library.
1331  Suggestion is to make the library initialization lazier, similar
1332  to what done for __kmpc_begin(). */
1333  // TODO: synchronize all static initializations with regular library
1334  // startup; look at kmp_global.cpp and etc.
1335  //__kmp_internal_begin ();
1336 }
1337 
1338 void __kmp_register_atfork(void) {
1339  if (__kmp_need_register_atfork) {
1340  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1341  __kmp_atfork_child);
1342  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1343  __kmp_need_register_atfork = FALSE;
1344  }
1345 }
1346 
1347 void __kmp_suspend_initialize(void) {
1348  int status;
1349  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1350  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1351  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1352  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1353 }
1354 
1355 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1356  ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1357  if (th->th.th_suspend_init_count <= __kmp_fork_count) {
1358  /* this means we haven't initialized the suspension pthread objects for this
1359  thread in this instance of the process */
1360  int status;
1361  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1362  &__kmp_suspend_cond_attr);
1363  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1364  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1365  &__kmp_suspend_mutex_attr);
1366  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1367  *(volatile int *)&th->th.th_suspend_init_count = __kmp_fork_count + 1;
1368  ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1369  }
1370 }
1371 
1372 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1373  if (th->th.th_suspend_init_count > __kmp_fork_count) {
1374  /* this means we have initialize the suspension pthread objects for this
1375  thread in this instance of the process */
1376  int status;
1377 
1378  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1379  if (status != 0 && status != EBUSY) {
1380  KMP_SYSFAIL("pthread_cond_destroy", status);
1381  }
1382  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1383  if (status != 0 && status != EBUSY) {
1384  KMP_SYSFAIL("pthread_mutex_destroy", status);
1385  }
1386  --th->th.th_suspend_init_count;
1387  KMP_DEBUG_ASSERT(th->th.th_suspend_init_count == __kmp_fork_count);
1388  }
1389 }
1390 
1391 // return true if lock obtained, false otherwise
1392 int __kmp_try_suspend_mx(kmp_info_t *th) {
1393  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1394 }
1395 
1396 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1397  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1398  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1399 }
1400 
1401 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1402  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1403  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1404 }
1405 
1406 /* This routine puts the calling thread to sleep after setting the
1407  sleep bit for the indicated flag variable to true. */
1408 template <class C>
1409 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1410  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1411  kmp_info_t *th = __kmp_threads[th_gtid];
1412  int status;
1413  typename C::flag_t old_spin;
1414 
1415  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1416  flag->get()));
1417 
1418  __kmp_suspend_initialize_thread(th);
1419 
1420  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1421  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1422 
1423  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1424  th_gtid, flag->get()));
1425 
1426  /* TODO: shouldn't this use release semantics to ensure that
1427  __kmp_suspend_initialize_thread gets called first? */
1428  old_spin = flag->set_sleeping();
1429 #if OMP_50_ENABLED
1430  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1431  __kmp_pause_status != kmp_soft_paused) {
1432  flag->unset_sleeping();
1433  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1434  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1435  return;
1436  }
1437 #endif
1438  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1439  " was %x\n",
1440  th_gtid, flag->get(), flag->load(), old_spin));
1441 
1442  if (flag->done_check_val(old_spin)) {
1443  old_spin = flag->unset_sleeping();
1444  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1445  "for spin(%p)\n",
1446  th_gtid, flag->get()));
1447  } else {
1448  /* Encapsulate in a loop as the documentation states that this may
1449  "with low probability" return when the condition variable has
1450  not been signaled or broadcast */
1451  int deactivated = FALSE;
1452  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1453 
1454  while (flag->is_sleeping()) {
1455 #ifdef DEBUG_SUSPEND
1456  char buffer[128];
1457  __kmp_suspend_count++;
1458  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1459  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1460  buffer);
1461 #endif
1462  // Mark the thread as no longer active (only in the first iteration of the
1463  // loop).
1464  if (!deactivated) {
1465  th->th.th_active = FALSE;
1466  if (th->th.th_active_in_pool) {
1467  th->th.th_active_in_pool = FALSE;
1468  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1469  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1470  }
1471  deactivated = TRUE;
1472  }
1473 
1474 #if USE_SUSPEND_TIMEOUT
1475  struct timespec now;
1476  struct timeval tval;
1477  int msecs;
1478 
1479  status = gettimeofday(&tval, NULL);
1480  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1481  TIMEVAL_TO_TIMESPEC(&tval, &now);
1482 
1483  msecs = (4 * __kmp_dflt_blocktime) + 200;
1484  now.tv_sec += msecs / 1000;
1485  now.tv_nsec += (msecs % 1000) * 1000;
1486 
1487  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1488  "pthread_cond_timedwait\n",
1489  th_gtid));
1490  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1491  &th->th.th_suspend_mx.m_mutex, &now);
1492 #else
1493  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1494  " pthread_cond_wait\n",
1495  th_gtid));
1496  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1497  &th->th.th_suspend_mx.m_mutex);
1498 #endif
1499 
1500  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1501  KMP_SYSFAIL("pthread_cond_wait", status);
1502  }
1503 #ifdef KMP_DEBUG
1504  if (status == ETIMEDOUT) {
1505  if (flag->is_sleeping()) {
1506  KF_TRACE(100,
1507  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1508  } else {
1509  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1510  "not set!\n",
1511  th_gtid));
1512  }
1513  } else if (flag->is_sleeping()) {
1514  KF_TRACE(100,
1515  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1516  }
1517 #endif
1518  } // while
1519 
1520  // Mark the thread as active again (if it was previous marked as inactive)
1521  if (deactivated) {
1522  th->th.th_active = TRUE;
1523  if (TCR_4(th->th.th_in_pool)) {
1524  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1525  th->th.th_active_in_pool = TRUE;
1526  }
1527  }
1528  }
1529 #ifdef DEBUG_SUSPEND
1530  {
1531  char buffer[128];
1532  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1533  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1534  buffer);
1535  }
1536 #endif
1537 
1538  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1539  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1540  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1541 }
1542 
1543 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
1544  __kmp_suspend_template(th_gtid, flag);
1545 }
1546 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
1547  __kmp_suspend_template(th_gtid, flag);
1548 }
1549 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1550  __kmp_suspend_template(th_gtid, flag);
1551 }
1552 
1553 /* This routine signals the thread specified by target_gtid to wake up
1554  after setting the sleep bit indicated by the flag argument to FALSE.
1555  The target thread must already have called __kmp_suspend_template() */
1556 template <class C>
1557 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1558  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1559  kmp_info_t *th = __kmp_threads[target_gtid];
1560  int status;
1561 
1562 #ifdef KMP_DEBUG
1563  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1564 #endif
1565 
1566  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1567  gtid, target_gtid));
1568  KMP_DEBUG_ASSERT(gtid != target_gtid);
1569 
1570  __kmp_suspend_initialize_thread(th);
1571 
1572  status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1573  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1574 
1575  if (!flag) { // coming from __kmp_null_resume_wrapper
1576  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1577  }
1578 
1579  // First, check if the flag is null or its type has changed. If so, someone
1580  // else woke it up.
1581  if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1582  // simply shows what
1583  // flag was cast to
1584  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1585  "awake: flag(%p)\n",
1586  gtid, target_gtid, NULL));
1587  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1588  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1589  return;
1590  } else { // if multiple threads are sleeping, flag should be internally
1591  // referring to a specific thread here
1592  typename C::flag_t old_spin = flag->unset_sleeping();
1593  if (!flag->is_sleeping_val(old_spin)) {
1594  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1595  "awake: flag(%p): "
1596  "%u => %u\n",
1597  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1598  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1599  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1600  return;
1601  }
1602  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1603  "sleep bit for flag's loc(%p): "
1604  "%u => %u\n",
1605  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1606  }
1607  TCW_PTR(th->th.th_sleep_loc, NULL);
1608 
1609 #ifdef DEBUG_SUSPEND
1610  {
1611  char buffer[128];
1612  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1613  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1614  target_gtid, buffer);
1615  }
1616 #endif
1617  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1618  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1619  status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1620  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1621  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1622  " for T#%d\n",
1623  gtid, target_gtid));
1624 }
1625 
1626 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
1627  __kmp_resume_template(target_gtid, flag);
1628 }
1629 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
1630  __kmp_resume_template(target_gtid, flag);
1631 }
1632 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1633  __kmp_resume_template(target_gtid, flag);
1634 }
1635 
1636 #if KMP_USE_MONITOR
1637 void __kmp_resume_monitor() {
1638  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1639  int status;
1640 #ifdef KMP_DEBUG
1641  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1642  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1643  KMP_GTID_MONITOR));
1644  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1645 #endif
1646  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1647  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1648 #ifdef DEBUG_SUSPEND
1649  {
1650  char buffer[128];
1651  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1652  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1653  KMP_GTID_MONITOR, buffer);
1654  }
1655 #endif
1656  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1657  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1658  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1659  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1660  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1661  " for T#%d\n",
1662  gtid, KMP_GTID_MONITOR));
1663 }
1664 #endif // KMP_USE_MONITOR
1665 
1666 void __kmp_yield() { sched_yield(); }
1667 
1668 void __kmp_gtid_set_specific(int gtid) {
1669  if (__kmp_init_gtid) {
1670  int status;
1671  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1672  (void *)(intptr_t)(gtid + 1));
1673  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1674  } else {
1675  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1676  }
1677 }
1678 
1679 int __kmp_gtid_get_specific() {
1680  int gtid;
1681  if (!__kmp_init_gtid) {
1682  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1683  "KMP_GTID_SHUTDOWN\n"));
1684  return KMP_GTID_SHUTDOWN;
1685  }
1686  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1687  if (gtid == 0) {
1688  gtid = KMP_GTID_DNE;
1689  } else {
1690  gtid--;
1691  }
1692  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1693  __kmp_gtid_threadprivate_key, gtid));
1694  return gtid;
1695 }
1696 
1697 double __kmp_read_cpu_time(void) {
1698  /*clock_t t;*/
1699  struct tms buffer;
1700 
1701  /*t =*/times(&buffer);
1702 
1703  return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC;
1704 }
1705 
1706 int __kmp_read_system_info(struct kmp_sys_info *info) {
1707  int status;
1708  struct rusage r_usage;
1709 
1710  memset(info, 0, sizeof(*info));
1711 
1712  status = getrusage(RUSAGE_SELF, &r_usage);
1713  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1714 
1715  // The maximum resident set size utilized (in kilobytes)
1716  info->maxrss = r_usage.ru_maxrss;
1717  // The number of page faults serviced without any I/O
1718  info->minflt = r_usage.ru_minflt;
1719  // The number of page faults serviced that required I/O
1720  info->majflt = r_usage.ru_majflt;
1721  // The number of times a process was "swapped" out of memory
1722  info->nswap = r_usage.ru_nswap;
1723  // The number of times the file system had to perform input
1724  info->inblock = r_usage.ru_inblock;
1725  // The number of times the file system had to perform output
1726  info->oublock = r_usage.ru_oublock;
1727  // The number of times a context switch was voluntarily
1728  info->nvcsw = r_usage.ru_nvcsw;
1729  // The number of times a context switch was forced
1730  info->nivcsw = r_usage.ru_nivcsw;
1731 
1732  return (status != 0);
1733 }
1734 
1735 void __kmp_read_system_time(double *delta) {
1736  double t_ns;
1737  struct timeval tval;
1738  struct timespec stop;
1739  int status;
1740 
1741  status = gettimeofday(&tval, NULL);
1742  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1743  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1744  t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start);
1745  *delta = (t_ns * 1e-9);
1746 }
1747 
1748 void __kmp_clear_system_time(void) {
1749  struct timeval tval;
1750  int status;
1751  status = gettimeofday(&tval, NULL);
1752  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1753  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1754 }
1755 
1756 static int __kmp_get_xproc(void) {
1757 
1758  int r = 0;
1759 
1760 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1761  KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
1762 
1763  r = sysconf(_SC_NPROCESSORS_ONLN);
1764 
1765 #elif KMP_OS_DARWIN
1766 
1767  // Bug C77011 High "OpenMP Threads and number of active cores".
1768 
1769  // Find the number of available CPUs.
1770  kern_return_t rc;
1771  host_basic_info_data_t info;
1772  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1773  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1774  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1775  // Cannot use KA_TRACE() here because this code works before trace support
1776  // is initialized.
1777  r = info.avail_cpus;
1778  } else {
1779  KMP_WARNING(CantGetNumAvailCPU);
1780  KMP_INFORM(AssumedNumCPU);
1781  }
1782 
1783 #else
1784 
1785 #error "Unknown or unsupported OS."
1786 
1787 #endif
1788 
1789  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1790 
1791 } // __kmp_get_xproc
1792 
1793 int __kmp_read_from_file(char const *path, char const *format, ...) {
1794  int result;
1795  va_list args;
1796 
1797  va_start(args, format);
1798  FILE *f = fopen(path, "rb");
1799  if (f == NULL)
1800  return 0;
1801  result = vfscanf(f, format, args);
1802  fclose(f);
1803 
1804  return result;
1805 }
1806 
1807 void __kmp_runtime_initialize(void) {
1808  int status;
1809  pthread_mutexattr_t mutex_attr;
1810  pthread_condattr_t cond_attr;
1811 
1812  if (__kmp_init_runtime) {
1813  return;
1814  }
1815 
1816 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1817  if (!__kmp_cpuinfo.initialized) {
1818  __kmp_query_cpuid(&__kmp_cpuinfo);
1819  }
1820 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1821 
1822  __kmp_xproc = __kmp_get_xproc();
1823 
1824  if (sysconf(_SC_THREADS)) {
1825 
1826  /* Query the maximum number of threads */
1827  __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX);
1828  if (__kmp_sys_max_nth == -1) {
1829  /* Unlimited threads for NPTL */
1830  __kmp_sys_max_nth = INT_MAX;
1831  } else if (__kmp_sys_max_nth <= 1) {
1832  /* Can't tell, just use PTHREAD_THREADS_MAX */
1833  __kmp_sys_max_nth = KMP_MAX_NTH;
1834  }
1835 
1836  /* Query the minimum stack size */
1837  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1838  if (__kmp_sys_min_stksize <= 1) {
1839  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1840  }
1841  }
1842 
1843  /* Set up minimum number of threads to switch to TLS gtid */
1844  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1845 
1846  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1847  __kmp_internal_end_dest);
1848  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1849  status = pthread_mutexattr_init(&mutex_attr);
1850  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1851  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1852  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1853  status = pthread_condattr_init(&cond_attr);
1854  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1855  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1856  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1857 #if USE_ITT_BUILD
1858  __kmp_itt_initialize();
1859 #endif /* USE_ITT_BUILD */
1860 
1861  __kmp_init_runtime = TRUE;
1862 }
1863 
1864 void __kmp_runtime_destroy(void) {
1865  int status;
1866 
1867  if (!__kmp_init_runtime) {
1868  return; // Nothing to do.
1869  }
1870 
1871 #if USE_ITT_BUILD
1872  __kmp_itt_destroy();
1873 #endif /* USE_ITT_BUILD */
1874 
1875  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1876  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1877 
1878  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1879  if (status != 0 && status != EBUSY) {
1880  KMP_SYSFAIL("pthread_mutex_destroy", status);
1881  }
1882  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1883  if (status != 0 && status != EBUSY) {
1884  KMP_SYSFAIL("pthread_cond_destroy", status);
1885  }
1886 #if KMP_AFFINITY_SUPPORTED
1887  __kmp_affinity_uninitialize();
1888 #endif
1889 
1890  __kmp_init_runtime = FALSE;
1891 }
1892 
1893 /* Put the thread to sleep for a time period */
1894 /* NOTE: not currently used anywhere */
1895 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1896 
1897 /* Calculate the elapsed wall clock time for the user */
1898 void __kmp_elapsed(double *t) {
1899  int status;
1900 #ifdef FIX_SGI_CLOCK
1901  struct timespec ts;
1902 
1903  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1904  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1905  *t =
1906  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1907 #else
1908  struct timeval tv;
1909 
1910  status = gettimeofday(&tv, NULL);
1911  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1912  *t =
1913  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1914 #endif
1915 }
1916 
1917 /* Calculate the elapsed wall clock tick for the user */
1918 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1919 
1920 /* Return the current time stamp in nsec */
1921 kmp_uint64 __kmp_now_nsec() {
1922  struct timeval t;
1923  gettimeofday(&t, NULL);
1924  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1925  (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1926  return nsec;
1927 }
1928 
1929 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1930 /* Measure clock ticks per millisecond */
1931 void __kmp_initialize_system_tick() {
1932  kmp_uint64 now, nsec2, diff;
1933  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1934  kmp_uint64 nsec = __kmp_now_nsec();
1935  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1936  while ((now = __kmp_hardware_timestamp()) < goal)
1937  ;
1938  nsec2 = __kmp_now_nsec();
1939  diff = nsec2 - nsec;
1940  if (diff > 0) {
1941  kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff);
1942  if (tpms > 0)
1943  __kmp_ticks_per_msec = tpms;
1944  }
1945 }
1946 #endif
1947 
1948 /* Determine whether the given address is mapped into the current address
1949  space. */
1950 
1951 int __kmp_is_address_mapped(void *addr) {
1952 
1953  int found = 0;
1954  int rc;
1955 
1956 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD || KMP_OS_KFREEBSD
1957 
1958  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
1959  ranges mapped into the address space. */
1960 
1961  char *name = __kmp_str_format("/proc/%d/maps", getpid());
1962  FILE *file = NULL;
1963 
1964  file = fopen(name, "r");
1965  KMP_ASSERT(file != NULL);
1966 
1967  for (;;) {
1968 
1969  void *beginning = NULL;
1970  void *ending = NULL;
1971  char perms[5];
1972 
1973  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
1974  if (rc == EOF) {
1975  break;
1976  }
1977  KMP_ASSERT(rc == 3 &&
1978  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
1979 
1980  // Ending address is not included in the region, but beginning is.
1981  if ((addr >= beginning) && (addr < ending)) {
1982  perms[2] = 0; // 3th and 4th character does not matter.
1983  if (strcmp(perms, "rw") == 0) {
1984  // Memory we are looking for should be readable and writable.
1985  found = 1;
1986  }
1987  break;
1988  }
1989  }
1990 
1991  // Free resources.
1992  fclose(file);
1993  KMP_INTERNAL_FREE(name);
1994 
1995 #elif KMP_OS_DARWIN
1996 
1997  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
1998  using vm interface. */
1999 
2000  int buffer;
2001  vm_size_t count;
2002  rc = vm_read_overwrite(
2003  mach_task_self(), // Task to read memory of.
2004  (vm_address_t)(addr), // Address to read from.
2005  1, // Number of bytes to be read.
2006  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2007  &count // Address of var to save number of read bytes in.
2008  );
2009  if (rc == 0) {
2010  // Memory successfully read.
2011  found = 1;
2012  }
2013 
2014 #elif KMP_OS_NETBSD
2015 
2016  int mib[5];
2017  mib[0] = CTL_VM;
2018  mib[1] = VM_PROC;
2019  mib[2] = VM_PROC_MAP;
2020  mib[3] = getpid();
2021  mib[4] = sizeof(struct kinfo_vmentry);
2022 
2023  size_t size;
2024  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2025  KMP_ASSERT(!rc);
2026  KMP_ASSERT(size);
2027 
2028  size = size * 4 / 3;
2029  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2030  KMP_ASSERT(kiv);
2031 
2032  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2033  KMP_ASSERT(!rc);
2034  KMP_ASSERT(size);
2035 
2036  for (size_t i = 0; i < size; i++) {
2037  if (kiv[i].kve_start >= (uint64_t)addr &&
2038  kiv[i].kve_end <= (uint64_t)addr) {
2039  found = 1;
2040  break;
2041  }
2042  }
2043  KMP_INTERNAL_FREE(kiv);
2044 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD
2045 
2046  // FIXME(DragonFly, OpenBSD): Implement this
2047  found = 1;
2048 
2049 #else
2050 
2051 #error "Unknown or unsupported OS"
2052 
2053 #endif
2054 
2055  return found;
2056 
2057 } // __kmp_is_address_mapped
2058 
2059 #ifdef USE_LOAD_BALANCE
2060 
2061 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2062 
2063 // The function returns the rounded value of the system load average
2064 // during given time interval which depends on the value of
2065 // __kmp_load_balance_interval variable (default is 60 sec, other values
2066 // may be 300 sec or 900 sec).
2067 // It returns -1 in case of error.
2068 int __kmp_get_load_balance(int max) {
2069  double averages[3];
2070  int ret_avg = 0;
2071 
2072  int res = getloadavg(averages, 3);
2073 
2074  // Check __kmp_load_balance_interval to determine which of averages to use.
2075  // getloadavg() may return the number of samples less than requested that is
2076  // less than 3.
2077  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2078  ret_avg = averages[0]; // 1 min
2079  } else if ((__kmp_load_balance_interval >= 180 &&
2080  __kmp_load_balance_interval < 600) &&
2081  (res >= 2)) {
2082  ret_avg = averages[1]; // 5 min
2083  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2084  ret_avg = averages[2]; // 15 min
2085  } else { // Error occurred
2086  return -1;
2087  }
2088 
2089  return ret_avg;
2090 }
2091 
2092 #else // Linux* OS
2093 
2094 // The fuction returns number of running (not sleeping) threads, or -1 in case
2095 // of error. Error could be reported if Linux* OS kernel too old (without
2096 // "/proc" support). Counting running threads stops if max running threads
2097 // encountered.
2098 int __kmp_get_load_balance(int max) {
2099  static int permanent_error = 0;
2100  static int glb_running_threads = 0; // Saved count of the running threads for
2101  // the thread balance algortihm
2102  static double glb_call_time = 0; /* Thread balance algorithm call time */
2103 
2104  int running_threads = 0; // Number of running threads in the system.
2105 
2106  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2107  struct dirent *proc_entry = NULL;
2108 
2109  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2110  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2111  struct dirent *task_entry = NULL;
2112  int task_path_fixed_len;
2113 
2114  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2115  int stat_file = -1;
2116  int stat_path_fixed_len;
2117 
2118  int total_processes = 0; // Total number of processes in system.
2119  int total_threads = 0; // Total number of threads in system.
2120 
2121  double call_time = 0.0;
2122 
2123  __kmp_str_buf_init(&task_path);
2124  __kmp_str_buf_init(&stat_path);
2125 
2126  __kmp_elapsed(&call_time);
2127 
2128  if (glb_call_time &&
2129  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2130  running_threads = glb_running_threads;
2131  goto finish;
2132  }
2133 
2134  glb_call_time = call_time;
2135 
2136  // Do not spend time on scanning "/proc/" if we have a permanent error.
2137  if (permanent_error) {
2138  running_threads = -1;
2139  goto finish;
2140  }
2141 
2142  if (max <= 0) {
2143  max = INT_MAX;
2144  }
2145 
2146  // Open "/proc/" directory.
2147  proc_dir = opendir("/proc");
2148  if (proc_dir == NULL) {
2149  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2150  // error now and in subsequent calls.
2151  running_threads = -1;
2152  permanent_error = 1;
2153  goto finish;
2154  }
2155 
2156  // Initialize fixed part of task_path. This part will not change.
2157  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2158  task_path_fixed_len = task_path.used; // Remember number of used characters.
2159 
2160  proc_entry = readdir(proc_dir);
2161  while (proc_entry != NULL) {
2162  // Proc entry is a directory and name starts with a digit. Assume it is a
2163  // process' directory.
2164  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2165 
2166  ++total_processes;
2167  // Make sure init process is the very first in "/proc", so we can replace
2168  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2169  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2170  // true (where "=>" is implication). Since C++ does not have => operator,
2171  // let us replace it with its equivalent: a => b == ! a || b.
2172  KMP_DEBUG_ASSERT(total_processes != 1 ||
2173  strcmp(proc_entry->d_name, "1") == 0);
2174 
2175  // Construct task_path.
2176  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2177  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2178  KMP_STRLEN(proc_entry->d_name));
2179  __kmp_str_buf_cat(&task_path, "/task", 5);
2180 
2181  task_dir = opendir(task_path.str);
2182  if (task_dir == NULL) {
2183  // Process can finish between reading "/proc/" directory entry and
2184  // opening process' "task/" directory. So, in general case we should not
2185  // complain, but have to skip this process and read the next one. But on
2186  // systems with no "task/" support we will spend lot of time to scan
2187  // "/proc/" tree again and again without any benefit. "init" process
2188  // (its pid is 1) should exist always, so, if we cannot open
2189  // "/proc/1/task/" directory, it means "task/" is not supported by
2190  // kernel. Report an error now and in the future.
2191  if (strcmp(proc_entry->d_name, "1") == 0) {
2192  running_threads = -1;
2193  permanent_error = 1;
2194  goto finish;
2195  }
2196  } else {
2197  // Construct fixed part of stat file path.
2198  __kmp_str_buf_clear(&stat_path);
2199  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2200  __kmp_str_buf_cat(&stat_path, "/", 1);
2201  stat_path_fixed_len = stat_path.used;
2202 
2203  task_entry = readdir(task_dir);
2204  while (task_entry != NULL) {
2205  // It is a directory and name starts with a digit.
2206  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2207  ++total_threads;
2208 
2209  // Consruct complete stat file path. Easiest way would be:
2210  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2211  // task_entry->d_name );
2212  // but seriae of __kmp_str_buf_cat works a bit faster.
2213  stat_path.used =
2214  stat_path_fixed_len; // Reset stat path to its fixed part.
2215  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2216  KMP_STRLEN(task_entry->d_name));
2217  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2218 
2219  // Note: Low-level API (open/read/close) is used. High-level API
2220  // (fopen/fclose) works ~ 30 % slower.
2221  stat_file = open(stat_path.str, O_RDONLY);
2222  if (stat_file == -1) {
2223  // We cannot report an error because task (thread) can terminate
2224  // just before reading this file.
2225  } else {
2226  /* Content of "stat" file looks like:
2227  24285 (program) S ...
2228 
2229  It is a single line (if program name does not include funny
2230  symbols). First number is a thread id, then name of executable
2231  file name in paretheses, then state of the thread. We need just
2232  thread state.
2233 
2234  Good news: Length of program name is 15 characters max. Longer
2235  names are truncated.
2236 
2237  Thus, we need rather short buffer: 15 chars for program name +
2238  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2239 
2240  Bad news: Program name may contain special symbols like space,
2241  closing parenthesis, or even new line. This makes parsing
2242  "stat" file not 100 % reliable. In case of fanny program names
2243  parsing may fail (report incorrect thread state).
2244 
2245  Parsing "status" file looks more promissing (due to different
2246  file structure and escaping special symbols) but reading and
2247  parsing of "status" file works slower.
2248  -- ln
2249  */
2250  char buffer[65];
2251  int len;
2252  len = read(stat_file, buffer, sizeof(buffer) - 1);
2253  if (len >= 0) {
2254  buffer[len] = 0;
2255  // Using scanf:
2256  // sscanf( buffer, "%*d (%*s) %c ", & state );
2257  // looks very nice, but searching for a closing parenthesis
2258  // works a bit faster.
2259  char *close_parent = strstr(buffer, ") ");
2260  if (close_parent != NULL) {
2261  char state = *(close_parent + 2);
2262  if (state == 'R') {
2263  ++running_threads;
2264  if (running_threads >= max) {
2265  goto finish;
2266  }
2267  }
2268  }
2269  }
2270  close(stat_file);
2271  stat_file = -1;
2272  }
2273  }
2274  task_entry = readdir(task_dir);
2275  }
2276  closedir(task_dir);
2277  task_dir = NULL;
2278  }
2279  }
2280  proc_entry = readdir(proc_dir);
2281  }
2282 
2283  // There _might_ be a timing hole where the thread executing this
2284  // code get skipped in the load balance, and running_threads is 0.
2285  // Assert in the debug builds only!!!
2286  KMP_DEBUG_ASSERT(running_threads > 0);
2287  if (running_threads <= 0) {
2288  running_threads = 1;
2289  }
2290 
2291 finish: // Clean up and exit.
2292  if (proc_dir != NULL) {
2293  closedir(proc_dir);
2294  }
2295  __kmp_str_buf_free(&task_path);
2296  if (task_dir != NULL) {
2297  closedir(task_dir);
2298  }
2299  __kmp_str_buf_free(&stat_path);
2300  if (stat_file != -1) {
2301  close(stat_file);
2302  }
2303 
2304  glb_running_threads = running_threads;
2305 
2306  return running_threads;
2307 
2308 } // __kmp_get_load_balance
2309 
2310 #endif // KMP_OS_DARWIN
2311 
2312 #endif // USE_LOAD_BALANCE
2313 
2314 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2315  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64)
2316 
2317 // we really only need the case with 1 argument, because CLANG always build
2318 // a struct of pointers to shared variables referenced in the outlined function
2319 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2320  void *p_argv[]
2321 #if OMPT_SUPPORT
2322  ,
2323  void **exit_frame_ptr
2324 #endif
2325  ) {
2326 #if OMPT_SUPPORT
2327  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2328 #endif
2329 
2330  switch (argc) {
2331  default:
2332  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2333  fflush(stderr);
2334  exit(-1);
2335  case 0:
2336  (*pkfn)(&gtid, &tid);
2337  break;
2338  case 1:
2339  (*pkfn)(&gtid, &tid, p_argv[0]);
2340  break;
2341  case 2:
2342  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2343  break;
2344  case 3:
2345  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2346  break;
2347  case 4:
2348  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2349  break;
2350  case 5:
2351  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2352  break;
2353  case 6:
2354  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2355  p_argv[5]);
2356  break;
2357  case 7:
2358  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2359  p_argv[5], p_argv[6]);
2360  break;
2361  case 8:
2362  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2363  p_argv[5], p_argv[6], p_argv[7]);
2364  break;
2365  case 9:
2366  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2367  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2368  break;
2369  case 10:
2370  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2371  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2372  break;
2373  case 11:
2374  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2375  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2376  break;
2377  case 12:
2378  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2379  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2380  p_argv[11]);
2381  break;
2382  case 13:
2383  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2384  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2385  p_argv[11], p_argv[12]);
2386  break;
2387  case 14:
2388  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2389  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2390  p_argv[11], p_argv[12], p_argv[13]);
2391  break;
2392  case 15:
2393  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2394  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2395  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2396  break;
2397  }
2398 
2399 #if OMPT_SUPPORT
2400  *exit_frame_ptr = 0;
2401 #endif
2402 
2403  return 1;
2404 }
2405 
2406 #endif
2407 
2408 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the paritioned timers to begin with name.
Definition: kmp_stats.h:929