
tion.
e three
et
 argu-
cond,
s it
 avoid
nd

tation

his
ies. I
 don’t
me

r
e
w
find
uilds
 fun-
d it

s-
spaces.

en-
n of
in test
Tcl Style Guide

Ray Johnson

Sun Microsystems, Inc.
rjohnson@eng.sun.com

1. Introduction

This is a manual for people who are developing Tcl code for Wish or any other Tcl applica
It describes a set of conventions for writing code and the associated test scripts. There ar
reasons for the conventions. First, the conventions ensure that certain important things g
done; for example, every procedure must have documentation that describes each of its
ments and its result, and there must exist test scripts that exercise every line of code. Se
the conventions guarantee that all of the Tcl and Tk code has a uniform style. This make
easier for us to use, read, and maintain each other’s code. Third, the conventions help to
some common mistakes by prohibiting error-prone constructs such as building lists by ha
instead of using the list building procedures.

This document is based heavily on theTcl/Tk Engineering Manualwritten by John Oust-
erhout. John’s engineering manual specified the style of the C code used in the implemen
of Tcl/Tk and many of its extensions. The manual is very valuable to the development of
Tcl/Tk and is an important reason why Tcl is a relatively easy system to maintain.

Deciding any style standard involves making trade-offs that are usually subjective. T
standard was created in an iterative process involving the Tcl/Tk group at Sun Laborator
don’t claim that these conventions are the best possible ones, but the exact conventions
really make that much difference. The most important thing is that we all do things the sa
way.

Please write your code so that it conforms to the conventions from the very start. Fo
example, don’t write comment-free code on the assumption that you’ll go back and put th
comments in later once the code is working. This simply won’t happen. Regardless of ho
good your intentions are, when it comes time to go back and put in the comments you’ll
that you have a dozen more important things to do; as the body of uncommented code b
up, it will be harder and harder to work up the energy to go back and fix it all. One of the
damental rules of software is that its structure only gets worse over time; if you don’t buil
right to begin with, it will never get that way later.

The rest of this document consists of 8 major parts. We start with Section 2 which di
cusses executable files. Section 3 discusses the overall structure of packages and name
Section 4 describes the structure of a Tcl code file and how to write procedure headers.
Section 5 desribes the Tcl naming conventions. Section 6 presents low-level coding conv
tions, such as how to indent and where to put curly braces. Section 7 contains a collectio
rules and suggestions for writing comments. Section 8 describes how to write and mainta
suites. Section 9 contains a few miscellaneous topics, such as keeping a change log.
Tcl Style Guide August 22, 1997 1

sary
run to
At

-
the

s a
e

he
ach

d

hich

y

th

f Tcl.

 more

he
ppli-

rt-up
.

tion
2. Executable files

An executable is a file, collection of files, or some other collection of Tcl code and neces
runtime environment. Often referred to as applications, an executable is simply what you
start your program. The format and exact make up of an executable is platform-specific.
some point, however, a Tclstart-up script will be evaluated. It is the start-up script that will
bootstrap any Tcl based application.

The role of the start-up script is to load any neededpackages, set up any non-package spe
cific state, and finally start the Tcl application by calling routines inside a Tcl package. If
start-up script is more than a few lines it should probably be a package itself.

There are several ways to create executable scripts. Each major platform usually ha
unique way of creating an executable application. Here is a brief description of how thes
applications should be created on each platform:

1. The most common method for creating executable applications on UNIX platforms is t
infamous#! mechanism built into most shells. Unfortunately, the most common appro
of just giving a path to wish is not recommended. Don’t do:

#! /usr/local/tclsh8.0 -f “$0” “$@”

This method will not work if the filetclsh is another script that, for example, locates an
starts the most recent version of Tcl. It also requirestclsh to be in a particular place,
which makes the script less portable. Instead, the following method should be used w
calls/bin/sh which will in turn exec thewish application.

#!/bin/sh
the next line restarts using wish \
exec wish8.0 "$0" "$@"

This example will actually locate thewish application in the user’s path which can be ver
useful for developers. The backslash is recognized as part of a comment tosh, but in Tcl the
backslash continues the comment into the next line which keeps theexec command from
executing again. However, more stable sites would probably want to include the full pa
instead of justwish . Note that the version number of thetclsh or wish interpreter is
usually added to the end of the program name. This allows you use a specific version o
In addition, many sites include a link ofwish to the latest version currently installed. This
is useful if you know that your code will work on any version of Tcl.

2. On the Windows platform you only need to end a file with the.tcl extension and the file will
be run when the user double clicks on the file. This is, of course, assuming you have
installed Tcl/Tk.

Alternatively, you may create a.bat file which explicitly executestclsh or wish with
an absolute path to your start-up script. Please check the Windows documentation for
details about.bat files.

3. The Macintosh platform doesn’t really have a notion of an executable Tcl file. One of t
reasons for this is that, unlike UNIX or Windows, you can only run one instance of an a
cation at a time. So instead of callingwish with a specific script to load, we must create a
copy of thewish application that is tied to our script.

The easiest way to do this is to use the applicationDrag&Drop Tclets or theSpecTcl GUI
builder which can do this work for you. You can also do this by hand by putting the sta
script into a TEXT resource and name ittclshrc - which ensures it gets sourced on start-up
This can be done withResEdit (a tool provided by Apple) or other tools that manipulate
resources. Additional scripts can also be placed in TEXT resource to make the applica
completely contained.
Tcl Style Guide August 22, 1997 2

t
appen

l such
e is
group
ges

cts of
ace

 pack-
a dis-

st to

tter

t. For
t or

 name
rd Tcl
Identi-

 the
 num-
 fixes,
ked
cre-
lease
dified
rsion

his
es
 be the

cl
at
3. Packages and namespaces

Tcl applications consist of collections ofpackages. Each package provides code to implemen
a related set of features. For example, Tcl itself is a package, as is Tk; these packages h
to be implemented in both C and Tcl. Other packages are implemented completely in Tc
as thehttp package included in the Tcl distribution. Packages are the units in which cod
developed and distributed: a single package is typically developed by a single person or
and distributed as a unit. It is possible to combine many independently-developed packa
into a single application; packages should be designed with this in mind. The notion of
namespaces were created to help make this easier. Namespaces help to hide private aspe
packages and avoid name collisions. A package will generally export one public namesp
which will include all state and routines that are associated with the package. A package
should not contain any global variables or global procedures. Side effects when loading a
age should be avoided. This document will focus on packages written entirely in Tcl. For
cussion of packages built in C or C and Tcl see theTcl/Tk Engineering Manual.

3.1 Package names

Each package should have a uniquename. The name of the package is used to identify the
package. It is also used as the name of the namespace that the package exports. It is be
have a simple one word name in all lower-case likehttp . Multi-word names are ok as well.
Additional words should just be concatenated with the first word but start with a capital le
like specMenu .

Coming up with a unique name for your package requires a collaborative componen
internal projects this is an easy task and can usually be decided among the managemen
principal engineers in your organization. For packages you wish to publish, however, you
should make an effort to make sure that an existing package isn’t already using the same
you are. This can often be done by checking the comp.lang.tcl newsgroup or the standa
ftp sites. It is also suggested (but not required) that you register your name on the NIST
fier Collaboration Service (NICS). It is located at: http://pitch.nist.gov/nics

3.2 Version numbers

Each package has a two-part version number such as 7.4. The first number (7) is called
major version number and the second (4) is called the minor version number. The version
ber changes with each public release of the package. If a new release contains only bug
new features, and other upwardly compatible changes, so that code and scripts that wor
with the old version will also work with the new version, then the minor version number in
ments and the major version number stays the same (e.g., from 7.4 to 7.5). If the new re
contains substantial incompatibilities, so that existing code and scripts will have to be mo
to run with the new version, then the major version number increments and the minor ve
number resets to zero (e.g., from 7.4 to 8.0).

3.3 Package Namespaces

As of version 8.0, Tcl supports namespaces to hide the internal structure of a package. T
helps avoid name collisions and provides a simpler way to manage packages. All packag
written for Tcl 8.0 or newer should use namespaces. The name of the name space should
same as the package name.

3.4 Structure

There are a couple of ways to deploy a package of Tcl commands.

• A pkgIndex.tcl file is used to createpackages that can be loaded on demand by any T
script. Like atclIndex file, a package specifies a set of Tcl and/or shared libraries th
Tcl Style Guide August 22, 1997 3

ing the

ers, it

. You

dures
tion of
e writ-
e
 of
 that
in a

ures.

rall

 is
ave

ode
 fig-
can be loaded when needed. A package, however, must be explicitly requested by us
package require command. You can use thepkg_mkIndex command to create a
package index file for your use. In most cases, particularly in code you distribute to oth
is better to use a package instead of thetclIndex auto-loading mechanism.

• On the Macintosh platform, shared libraries can be made into self contained packages
simply need to add a TEXT resource with the name ofpkgIndex . It will be treated in the
exact same fashion as apkgIndex.tcl file. ThepkgIndex resource should have the
same format as thepkgIndex.tcl file.

4. How to organize a code file

Each source code file should either contain an entire application or a set of related proce
that make up a package or a another type of identifiable module, such as the implementa
the menus for your application, or a set of procedures to implement HTTP access. Befor
ing any code you should think carefully about what functions are to be provided and divid
them into files in a logical way. The most manageable size for files is usually in the range
500-2000 lines. If a file gets much larger than this, it will be hard to remember everything
the file does. If a file is much shorter than this, then you may end up with too many files
directory, which is also hard to manage.

4.1 The file header

The first part of a code file is referred to as theheader. It contains overall information that is
relevant throughout the file. It consists of everything but the definitions of the file’s proced
The header typically has four parts, as shown in Figure 1:

Abstract: The first few lines give the name of the file and a brief description of the ove
functions provided by the file, just as in header files.

Copyright notice: The notice protects ownership of the file. The copyright shown above
included in the Tcl and Tk sources. More product specific packages would probably h
the wordsAll rights reserved included instead. If more than one entity contributed to the
page they should each have a distinct copyright line.

Revision string: The contents of this string are managed automatically by the source c
control system for the file, such as RCS or SCCS (SCCS is used in the example in the
ure). It identifies the file’s current revision, date of last modification, and so on.

specMenu.tcl --
#
This file implements the Tcl code for creating and
managing the menus in the SpecTcl application.
#
Copyright (c) 1994-1997 Sun Microsystems, Inc.
#
See the file "license.terms" for information on usage and
redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
SCCS: %Z% %M% %I% %E% %U%

package require specTable
package provide specMenu 1.0
namespace eval specMenu {
 namespace export addMenu
 array set menuData {one two three}
 ...
}

Figure 1. An example of a header page.

Abstract

Copyright

Revision
String

Package
Definition
Tcl Style Guide August 22, 1997 4

y this
xt and

x of

the
eed to
d
 con-
is
i-

tion
tain
d noth-

w the
me

r which

pects.
d type

ehav-
ts
Package definition: Also anyrequire statements for other packages that this package
depends on should be the first code in the file. Any global variables that are managed b
file should be declared at the top of the page. The name space definition should be ne
the export list should be the first item in the namespace definition.

Please structure your header pages in exactly the order given above and follow the synta
Figure 1 as closely as possible. The filefileHead.tcl provides a template for a header
page.

4.2 Multi-file packages

Some packages may be too large to fit into one file. You may want to consider breaking
package into multiple independent packages. However, when that is not an option you n
make one of the files theprimary file. The primary file will include the complete export list an
the definitions of all exported variables and procedures. The secondary files should only
tain supporting routines to the primary file. It is important to construct your package in th
manner or utilities likepkg_mkIndex will not work correctly. Finally, the header to the var
ous files should make it clear which file is the primary file and which are supporting files.

4.3 Procedure headers

After the header you will have one or more procedures. Each procedure will begin with apro-
cedure header that gives overall documentation for the procedure, followed by the declara
and body for the procedure. See Figure Figure 2 for an example. The header should con
everything that a caller of the procedure needs to know in order to use the procedure, an
ing else. It consists of three parts:

Abstract: The first lines in the header give the procedure’s name, followed by a brief
description of what the procedure does. This should not be a detailed description of ho
procedure is implemented, but rather a high-level summary of its overall function. In so
cases, such as callback procedures, I recommend also describing the conditions unde
the procedure is invoked and who calls the procedure.

Arguments: This portion of the header describes the arguments that the procedure ex
Each argument should get at least one line. The comment should describe the expecte
and describe it’s function. Optional arguments should be pointed out and the default b
ior of an unspecified argument should be mentioned. Comments for all of the argumen
should line up on the same tab stop.

tcl::HistRedo --
#
Fetch the previous or specified event, execute it, and then
replace the current history item with that event.
#
Arguments:
event (optional) index of history item to redo. Defaults
to -1, which means the previous event.

Results:
The result is that of the command being redone. Also replaces
the current history list item with the one being redone.

proc tcl::HistRedo {{event -1}} {
 ...
}

Figure 2. The header comments and declaration for a procedure.
Tcl Style Guide August 22, 1997 5

e type
on any

 as a
 dou-

e pro-
espace
f
 for

ds).
s the
s

n by

argu-

pe,
f the

s that
es, as

s clar-
result
hen

bout
 your-
Results: The last part of the header describes the value returned by the procedure. Th
and the intended use of the result should be described. This section should also menti
side effects that are worth noting.

The filetclProcHead contains a template for a procedure header which should be used
base for all new Tcl commands. Follow the syntax of Figure 2 exactly (same indentation,
ble-dash after the procedure name, etc.).

4.4 Procedure declarations

The procedure declaration should also follow exactly the syntax in Figure 2. Note that th
cedure is defined outside the namespace command that defines the export list and nam
globals. The first line gives theproc keyword, the procedure name, and an argument list. I
there are many arguments, they may spill onto additional lines (see Sections 6.1 and 6.3
information about indentation).

4.5 Parameter order

Procedure parameters may be divided into three categories.In parameters only pass informa-
tion into the procedure (either directly or by pointing to information that the procedure rea
Out parameters point to things in the caller’s memory that the procedure modifies such a
name of a variable the procedure will modify.In-out parameters do both. Below is a set of rule
for deciding on the order of parameters to a procedure:

1. Parameters should normally appear in the order in, in/out, out, except where overridde
the rules below.

2. If an argument is actually a sub-command for the command than it should be the first
ment of the command. For example:

proc graph::tree {subCmd args} {
switch $subCmd {

add {
eval add_node $args

}
draw {...

3. If there is a group of procedures, all of which operate on an argument of a particular ty
such as a file path or widget path, the argument should be the first argument to each o
procedures (or after the sub-command argument).

4.6 Procedure bodies

The body of a procedure follows the declaration. See Section 6 for the coding convention
govern procedure bodies. The curly braces enclosing the body should be on different lin
shown in Figure Figure 2, even if the body of the procedure is empty.

5. Naming conventions

Choosing names is one of the most important aspects of programming. Good name
ify the function of a program and reduce the need for other documentation. Poor names
in ambiguity, confusion, and error. This section gives some general principles to follow w
choosing names and lists specific rules for name syntax, such as capitalization.

5.1 General considerations

The ideal variable name is one that instantly conveys as much information as possible a
the purpose of the variable it refers to. When choosing names, play devil’s advocate with
Tcl Style Guide August 22, 1997 6

ome

ample,

hey

ake to

mple,

actly,
e.

space

hould

er-

ese
.

ded
self to see if there are ways that a name might be misinterpreted or confused. Here are s
things to consider:

1. Are you consistent? Use the same name to refer to the same thing everywhere. For ex
within the code for handling standard bindings in Tk widgets, a standard namew is always
used to refer to the window associated with the current event.

2. If someone sees the name out of context, will they realize what it stands for, or could t
confuse it with something else? For example, the procedure namebuildStructure
could get confused with some other part of the system. A name likebuildGraphNode
both describes what part of the system it belongs to and what it is probably used for.

3. Could this name be confused with some other name? For example, it’s probably a mist
have two variablesstr andstring in the same procedure: it will be hard for anyone to
remember which is which. Instead, change the names to reflect their functions. For exa
if the strings are used as source and destination for a copy operation, name themsrc and
dst .

4. Is the name so generic that it doesn’t convey any information? The variablestr from the
previous paragraph is an example of this; changing its name tosrc makes the name less
generic and hence conveys more information.

5.2 Basic syntax rules

Below are some specific rules governing the syntax of names. Please follow the rules ex
since they make it possible to determine certain properties of a variable just from its nam

1. Exported names for both procedures and variables always start with alower-case letter. Pro-
cedures and variables that are meant only for use with in the current package or name
should start with anupper-case letter. We chose lower-case for the exported symbols
because it is possible they may be commonly used from the command line and they s
be easy to write. For example:

CountNum is a private variable
set CountNum 0
The function addWindow is public
proc addWindow {} {...
newWindow is a public interface in the spectcl namespace
proc spectcl::newWindow {} {...

2. In multi-word names, the first letter of each trailing word is capitalized. Do not use und
scores or dashes as separators between the words of a name.

set numWindows 0

3. Any variable whose value refers to another variable has a name that ends inName. Further-
more, the name should also indicate what type of variable the name is referring to. Th
names are often used in arguments to procedures that are taking a name of a variable

proc foo::Bar {arrayName} {
upvar 1 $arrayName array
...

}

4. Variables that hold Tcl code that will beeval ed should have names ending inScript .

proc log::eval {logScript} {
if {$Log::logOn} {

set result [catch {eval $logScript} msg]
...

5. Variables that hold a partial Tcl command that must have additional arguments appen
before being a valid script should have names ending inCmd.
Tcl Style Guide August 22, 1997 7

help
g con-

n all of
 rather
ents

e ends
e, par-

. Also
actly
ding
e sec-

rround-
 word

s in
ith an
, so

oce-
foreach scrollCmd $listScrollCmds {
eval $scrollCmd $args

}

6. Low-level coding conventions

This section describes several low-level syntactic rules for writing Tcl code. These rules
to ensure that all of the Tcl code looks the same, and they prohibit a few confusing codin
structs.

6.1 Indents are 4 spaces

Each level of indentation should be four spaces. There are ways to set 4-space indents i
the most common editors. Be sure that your editor really uses four spaces for the indent,
than just displaying tabs as four spaces wide; if you use the latter approach then the ind
will appear eight spaces wide in other editors.

6.2 Code comments occupy full lines

Comments that document code should occupy full lines, rather than being tacked onto th
of lines containing code. The reason for this is that side-by-side comments are hard to se
ticularly if neighboring statements are long enough to overlap the side-by-side comments
it is easy to place comments in a place that could cause errors. Comments must have ex
the structure shown in Figure 3, with a blank line above and below the comment. The lea
blank line can be omitted if the comment is at the beginning of a block, as is the case in th
ond comment in Figure 3. Each comment should be indented to the same level as the su
ing code. Use proper English in comments: write complete sentences, capitalize the first
of each sentence, and so
on.

6.3 Continuation lines are indented 8 spaces

You should use continuation lines to make sure that no single line exceeds 80 character
length. Continuation lines should be indented 8 spaces so that they won’t be confused w
immediately-following nested block. Pick clean places to break your lines for continuation
that the continuation doesn’t obscure the structure of the statement. For example, if a pr

If we are running on the Macintosh platform then we can
assume that the sources are located in the resource fork
of our application, and we do not need to search for them.

if {$tcl_platform(platform) == “macintosh”} {
 return
}

foreach dir $dirList {
 # If the source succeds then we are done.

 if {![catch {source [file join $dir file.tcl]}]} {
 break
 }
}

Figure 3. Comments in code have the form shown above, using full lines, with lined-up hash
marks, the comment takes at least a full line, and blank separator lines around each comment
(except that the leading blank line can be omitted if the comment is at the beginning of a code
block).
Tcl Style Guide August 22, 1997 8

s mul-
the
tion

 char-
and

 placed
 outer

n-
many

nt in

 substi-
each

 what is
er

e.
s the
ing

se
new
dure call requires continuation lines, try to avoid situations where a single argument span
tiple lines. If the test for anif or while command spans lines, try to make each line have
same nesting level of parentheses and/or brackets if possible. I try to start each continua
line with an operator such as* , &&, or || ; this makes it clear that the line is a continuation,
since a new statement would never start with such an operator.

6.4 Only one command per line

You should only have one Tcl command per line on the page. Do not use the semi-colon
acter to place multiple commands on the same line. This makes the code easier to read
helps with debugging.

6.5 Curly braces: { goes at the end of a line

Open curly braces can not appear on lines by themselves in Tcl. Instead, they should be
at the end of the preceding line. Close curly braces are indented to the same level as the
code, i.e., four spaces less than the statements they enclose. However, you shouldalways use
curly braces rather than some other list generating mechanism that will work in the Tcl la
guage. This will help make code more readable, will avoid unwanted side effects, and in
cases will generate faster code with the Tcl compiler.

Control structures should always use curly braces, even if there is only one stateme
the block. Thus you shouldn’t write code like

if {$tcl_platform(platform) == “unix”} return

but rather

if {$tcl_platform(platform) == “unix”} {
 return
}

This approach makes code less dense, but it avoids potential mistakes like unwanted Tcl
tutions. It also makes it easier to set breakpoints in a debugger, since it guarantees that
statement is on a separate line and can be named individually.

6.6 Parenthesize expressions

Use parentheses around each subexpression in an expression to make it absolutely clear
the evaluation order of the expression (a reader of your code should not need to rememb
Tcl’s precedence rules). For example, don’t type

if {$x > 22 && $y <= 47} ...

Instead, type this:

if {($x > 22) && ($y <= 47)} ...

6.7 Always use the return statement

You should always explicitly use thereturn statement to return values from a Tcl procedur
By default Tcl will return the value of the last Tcl statement executed in a Tcl procedure a
return value of the procedure which often leads to confusion as to where the result is com
from. In addition, you should use areturn statement with no argument for procedures who
results are ignored. Supplying this return will actually speed up your application with the
Tcl compiler. For example, don’t write code like this:

proc foo {x y} {
if {$x < 0} {

incr x
} else {

expr $x + $y
}

}

Tcl Style Guide August 22, 1997 9

ving
. Com-
mments

hat this

l.
tion

ally
our
. Ide-
rectly.
 they
ir
men-
asier
 to
But rather, type this:

proc foo {x y} {
if {$x < 0} {

return [incr x]
} else {

return [expr $x + $y]
}

}

For Tcl procedures that have no return value a singlereturn statement with no arguments is
placed at the end of the procedure.

6.8 Switch statements

Theswitch statement should be formatted as below. Always use the -- option to avoid ha
the string be confused with an option. This can happen when the string is user generated
ments can be added on the same line as the pattern to comment the pattern case. The co
for each case should line up on the same tab stop and must be within the braces. Note t
is an exception to the standard commenting conventions.

switch -regexp -- $string {
plus -
add { # Do add task

...
}
subtract { # Do subtract case

...
}
default {

...
}

}

6.9 If statements

Never use thethen word of anif statement. It is syntactic sugar that really isn’t that usefu
However, theelse word should always be used as it does impart some semantic informa
and it is more like the C language. Here is an example:

if {$x < 0} {
...

} elseif {$x == 0} {
...

} else {
...

}

7. Documenting code

The purpose of documentation is to save time and reduce errors. Documentation is typic
used for two purposes. First, people will read the documentation to find out how to use y
code. For example, they will read procedure headers to learn how to call the procedures
ally, people should have to learn as little as possible about your code in order to use it cor
Second, people will read the documentation to find out how your code works internally, so
can fix bugs or add new features; again, good documentation will allow them to make the
fixes or enhancements while learning the minimum possible about your code. More docu
tation isn’t necessarily better: wading through pages of documentation may not be any e
than deciphering the code. Try to pick out the most important things that will help people
understand your code and focus on these in your documentation.
Tcl Style Guide August 22, 1997 10

ro-
 every
ill be
ill be

. For
s. If
the
how
ment
ents
 what
 pro-

at it
mon)

ode,
 exam-

e
 com-

ce-

 keep
jor
7.1 Document things with wide impact

The most important things to document are those that affect many different pieces of a p
gram. Thus it is essential that every procedure interface, every structure declaration, and
global variable be documented clearly. If you haven’t documented one of these things it w
necessary to look at all the uses of the thing to figure out how it’s supposed to work; this w
time-consuming and error-prone.

On the other hand, things with only local impact may not need much documentation
example, in short procedures I don’t usually have comments explaining the local variable
the overall function of the procedure has been explained, and if there isn’t much code in
procedure, and if the variables have meaningful names, then it will be easy to figure out
they are used. On the other hand, for long procedures with many variables I usually docu
the key variables. Similarly, when I write short procedures I don’t usually have any comm
in the procedure’s code: the procedure header provides enough information to figure out
is going on. For long procedures I place a comment block before each major piece of the
cedure to clarify the overall flow through the procedure.

7.2 Don’t just repeat what’s in the code

The most common mistake I see in documentation (besides it not being there at all) is th
repeats what is already obvious from the code, such as this trivial (but exasperatingly com
example:

Increment i.

incr i

Documentation should provide higher-level information about the overall function of the c
helping readers to understand what a complex collection of statements really means. For
ple, the comment

Probe into the array to see if the symbol exists.

is likely to be much more helpful than

Loop through every array index, get the third value of the
list in the content to determine if it has the symbol we are
looking for. Set the result to the symbol if we find it.

Everything in this second comment is probably obvious from the code that follows it.
Another thing to consider in your comments is word choice. Use different words in th

comments than the words that appear in variable or procedure names. For example, the
ment

SwapPanels --
#
Swap the panels.
...

is not a very useful comment. Everything in the comment is already obvious from the pro
dure’s name. Here is a much more useful comment:

SwapPanels --
#
Unmap the current UI panel from the parent frame and replace
it with the newly specified frame. Make sure that the new
panel fits into the old frame and resize if needed.
...

This comment tellswhy you might want to use the procedure, in addition towhat it does,
which makes the comment much more useful.

7.3 Document each thing in exactly one place

Systems evolve over time. If something is documented in several places, it will be hard to
the documentation up to date as the system changes. Instead, try to document each ma
Tcl Style Guide August 22, 1997 11

 design
.
ight
edure
ake

ted
ace to
body
ll else
cision.

his
ple
 writ-
hould
hat

ting
me
nd
at you

e end

u
 key

w
he
ces fit

 that
vious
erty
d its
tle

een
e new
t they

ing
st
design decision in exactly one place, as near as possible to the code that implements the
decision. The principal documentation for each procedure goes in the procedure header
There’s no need to repeat this information again in the body of the procedure (but you m
have additional comments in the procedure body to fill in details not described in the proc
header). If a library procedure is documented thoroughly in a manual entry, then I may m
the header for the procedure very terse, simply referring to the manual entry.

The other side of this coin is that every major design decision needs to be documenat
least once. If a design decision is used in many places, it may be hard to pick a central pl
document it. Try to find a data structure or key procedure where you can place the main
of comments; then reference this body in the other places where the decision is used. If a
fails, add a block of comments to the header page of one of the files implementing the de

7.4 Write clean code

The best way to produce a well-documented system is to write clean and simple code. T
way there won’t be much to document. If code is clean, it means that there are a few sim
ideas that explain its operation; all you have to do is to document those key ideas. When
ing code, ask yourself if there is a simple concept behind the code. If not, perhaps you s
rethink the code. If it takes a lot of documentation to explain a piece of code, it is a sign t
you haven’t found a clean solution to the problem.

7.5 Document as you go

It is extremely important to write the documentation as you write the code. It’s very temp
to put off the documentation until the end; after all, the code will change, so why waste ti
writing documentation now when you’ll have to change it later? The problem is that the e
never comes – there is always more code to write. Also, the more undocumented code th
accumulate, the harder it is to work up the energy to document it. So, you just write more
undocumented code. I’ve seen many people start a project fully intending to go back at th
and write all the documentation, but I’ve never seen anyone actually do it.

If you do the documentation as you go, it won’t add much to your coding time and yo
won’t have to worry about doing it later. Also, the best time to document code is when the
ideas are fresh in your mind, which is when you’re first writing the code. When I write ne
code, I write all of the header comments for a group of procedures before I fill in any of t
bodies of the procedures. This way I can think about the overall structure and how the pie
together before getting bogged down in the details of individual procedures.

7.6 Document tricky situations

If code is non-obvious, meaning that its structure and correctness depend on information
won’t be obvious to someone reading it for the first time, be sure to document the non-ob
information. One good indicator of a tricky situation is a bug. If you discover a subtle prop
of your program while fixing a bug, be sure to add a comment explaining the problem an
solution. Of course, it’s even better if you can fix the bug in a way that eliminates the sub
behavior, but this isn’t always possible.

8. Testing

One of the environments where Tcl works best is for testing. While Tcl has traditionally b
used for testing C code it is equally as good at testing other Tcl code. Whenever you writ
code you should write Tcl test scripts to go with that code and save the tests in files so tha
can be re-run later. Writing test scripts isn’t as tedious as it may sound. If you’re develop
your code carefully you’re already doing a lot of testing; all you need to do is type your te
Tcl Style Guide August 22, 1997 12

ere

 tests.

al
e
es

ch as
ve a
o
-
er as

 see

he set

ne test
ource

 it easy

is one
in the
cases into a script file where they can be reused, rather than typing them interactively wh
they vanish after they’re run.

8.1 Basics

Tests should be organized into script files, where each file contains a collection of related
Individual tests should be based on the proceduretest , just like in the Tcl and Tk test suites.
Here are two examples:

test expr-3.1 {floating-point operators} {
 expr 2.3*.6
} 1.38
test expr-3.2 {floating-point operators} {unixOnly} {
 list [catch {expr 2.3/0} msg] $msg
} {1 {divide by zero}}

test is a procedure defined in a script file nameddefs , which issource d by each test file.
test takes four or five arguments: a test identifier, a string describing the test, an option
argument describing the conditions under which this test should run, a test script, and th
expected result of the script.test evaluates the script and checks to be sure that it produc
the expected result. If not, it prints a message like the following:

==== expr-3.1 floating-point operators
==== Contents of test case:

 expr 2.3*.6

==== Result was:
1.39
---- Result should have been:
1.38
---- expr-3.1 FAILED

To run a set of tests, you start up the application andsource a test file. If all goes well no
messages appear; if errors are detected, a message is printed for each error.

The test identifier, such asexpr-3.1 , is printed when errors occur. It can be used to
search a test script to locate the source for a failed test. The first part of the identifier, su
expr , should be the same as the name of the test file, except that the test file should ha
.test extension, such asexpr.test . The two numbers allow you to divide your tests int
groups. The tests in a particular group (e.g., all theexpr-3. n tests) relate to a single sub-fea
ture, such as a single procedure. The tests should appear in the test file in the same ord
their numbers.

The test name, such asfloating-point operators , is printed when errors occur.
It provides human-readable information about the general nature of the test.

Before writing tests I suggest that you look over some of the test files for Tcl and Tk to
how they are structured. You may also want to look at theREADME files in the Tcl and Tk test
directories to learn about additional features that provide more verbose output or restrict t
of tests that are run.

8.2 Organizing tests

Organize your tests to match the code being tested. The best way to do this is to have o
file for each source code file, with the name of the test file derived from the name of the s
file in an obvious way (e.g.http.test contains tests for the code inhttp.tcl). Within
the test file, have one group of tests for each procedure (for example, all thehttp-3. n tests
in http.test are for the procedurehttp::geturl). The order of the tests within a group
should be the same as the order of the code within the procedure. This approach makes
to find the tests for a particular piece of code and add new tests as the code changes.

The Tcl test suite was written a long time ago and uses a different style where there
file for each Tcl command or group of related commands, and the tests are grouped with
Tcl Style Guide August 22, 1997 13

ticular
lves. I

e.
plica-

e
sible

ing
ting
 extra

ition,
rrect.

ecute
 a list,
nt, and
act in

art of
d writ-

u’ll
t

ike

sts

n for
the sim-
er-
d

ation.
is
 each
e oth-

onfigu-
 code
’t
tests.
file by sub-command or features. In this approach the relationship between tests and par
pieces of code is much less obvious, so it is harder to maintain the tests as the code evo
don’t recommend using this approach for new tests.

8.3 Coverage

When writing tests, you should attempt to exercise every line of source code at least onc
There will be occasionally be code that you can’t exercise, such as code that exits the ap
tion, but situations like this are rare. You may find it hard to exercise some pieces of cod
because existing Tcl commands don’t provide fine enough control to generate all the pos
execution paths. In situations like this, write one or more new Tcl commands just for test
purposes. It’s much better to test a facility directly then to rely on some side effect for tes
that may change over time. Use a similar approach in your own code, where you have an
file with additional commands for testing.

It’s not sufficient just to make sure each line of code is executed by your tests. In add
your tests must discriminate between code that executes correctly and code that isn’t co
For example, write tests to make sure that thethen andelse branches of eachif statement
are taken under the correct conditions. For a loop, run different tests to make the loop ex
zero times, one time, and two or more times. If a piece of code removes an element from
try cases where the element to be removed is the first element, last element, only eleme
neither first element nor last. Try to find all the places where different pieces of code inter
unusual ways, and exercise the different possible interactions.

8.4 Fixing bugs

Whenever you find a bug in your code it means that the test suite wasn’t complete. As p
fixing the bug, you should add new tests that detect the presence of the bug. I recommen
ing the tests after you’ve located the bug butbefore you fix it. That way you can verify that the
bug happens before you implement the fix and the bug doesn’t happen afterwards, so yo
know you’ve really fixed something. Use bugs to refine your testing approach: think abou
what you might be able to do differently when you write tests in the future to keep bugs l
this one from going undetected.

8.5 Tricky features

I also use tests as a way of illustrating the need for tricky code. If a piece of code has an
unusual structure, and particularly if the code is hard to explain, I try to write additional te
that will fail if the code is implemented in the obvious manner instead of using the tricky
approach. This way, if someone comes along later, doesn’t understand the documentatio
the code, decides the complex structure is unnecessary, and changes the code back to
ple (but incorrect) form, the test will fail and the person will be able to use the test to und
stand why the code needs to be the way it is. Illustrative tests are not a substitute for goo
documentation, but they provide a useful addition.

8.6 Test independence

Try to make tests independent of each other, so that each test can be understood in isol
For example, one test shouldn’t depend on commands executed in a previous test. This
important because the test suite allows tests to be run selectively: if the tests depend on
other, then false errors will be reported when someone runs a few of the tests without th
ers.

For convenience, you may execute a few statements in the test file to set up a test c
ration and then run several tests based on that configuration. If you do this, put the setup
outside the calls to thetest procedure so it will always run even if the individual tests aren
run. I suggest keeping a very simple structure consisting of setup followed by a group of
Tcl Style Guide August 22, 1997 14

s,
hat
setup.

r,
de in

aking
bout

 your
m

s

 intro-
rt

 is
ure to

 peo-
Don’t perform some setup, run a few tests, modify the setup slightly, run a few more test
modify the setup again, and so on. If you do this, it will be hard for people to figure out w
the setup is at any given point and when they add tests later they are likely to break the

9. Miscellaneous

9.1 Porting Issues

Writing portable scripts in Tcl is actually quite easy as Tcl itself is quite portable. Howeve
issues do arise that may require writing platform specific code. To conditionalize your co
this manner you should use thetcl_platform array to determine platform specific differ-
ences. You should avoid the use of theenv variable unless you have already determined the
platform you are running on via thetcl_platform array.

As Tcl/Tk has become more cross platform we have added commands that aid in m
your code more portable. The most common porting mistakes result from assumptions a
file names and locations. To avoid such mistakes always use thefile join command and
list commands so that you will handle different file separation characters or spaces in file
names. In Tk, you should always use provided high level dialog boxes instead or creating
own. Thefont andmenu commands has also be revamped to make writing cross-platfor
code easier.

9.2 Changes files

Each package should contain a file namedchanges that keeps a log of all significant change
made to the package. Thechanges file provides a way for users to find out what’s new in
each new release, what bugs have been fixed, and what compatibility problems might be
duced by the new release. Thechanges file should be in chronological order. Just add sho
blurbs to it each time you make a change. Here is a sample from the Tkchanges file:

5/19/94 (bug fix) Canvases didn't generate proper Postscript for
stippled text. (RJ)

5/20/94 (new feature) Added "bell" command to ring the display's
bell. (JO)

5/26/94 (feature removed) Removed support for "fill" justify mode
from Tk_GetJustify and from the TK_CONFIG_JUSTIFY configuration
option. None of the built-in widgets ever supported this mode
anyway. (SS)
*** POTENTIAL INCOMPATIBILITY ***

The entries in thechanges file can be relatively terse; once someone finds a change that
relevant, they can always go to the manual entries or code to find out more about it. Be s
highlight changes that cause compatibility problems, so people can scan thechanges file
quickly to locate the incompatibilities. Also be sure to add your initials to the entry so that
ple scanning the log will know who made a particular change.
Tcl Style Guide August 22, 1997 15

	1. Introduction
	2. Executable files
	3. Packages and namespaces
	3.1 Package names
	3.2 Version numbers
	3.3 Package Namespaces
	3.4 Structure

	4. How to organize a code file
	4.1 The file header
	4.2 Multi-file packages
	4.3 Procedure headers
	4.4 Procedure declarations
	4.5 Parameter order
	4.6 Procedure bodies

	5. Naming conventions
	5.1 General considerations
	5.2 Basic syntax rules

	6. Low-level coding conventions
	6.1 Indents are 4 spaces
	6.2 Code comments occupy full lines
	6.3 Continuation lines are indented 8 spaces
	6.4 Only one command per line
	6.5 Curly braces: { goes at the end of a line
	6.6 Parenthesize expressions
	6.7 Always use the return statement
	6.8 Switch statements
	6.9 If statements

	7. Documenting code
	7.1 Document things with wide impact
	7.2 Don’t just repeat what’s in the code
	7.3 Document each thing in exactly one place
	7.4 Write clean code
	7.5 Document as you go
	7.6 Document tricky situations

	8. Testing
	8.1 Basics
	8.2 Organizing tests
	8.3 Coverage
	8.4 Fixing bugs
	8.5 Tricky features
	8.6 Test independence

	9. Miscellaneous
	9.1 Porting Issues
	9.2 Changes files

