
RECV(2) Linux Programmer's Manual RECV(2)

NAME
 recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

int recv(int s, void *buf, int len, unsigned int flags);

int recvfrom(int s, void *buf, int len, unsigned int flags
struct sockaddr *from, int *fromlen);

int recvmsg(int s, struct msghdr *msg, unsigned int
flags);

DESCRIPTION
 The recvfrom and recvmsg calls are used to receive mes-
 sages from a socket, and may be used to receive data on a
 socket whether or not it is connection-oriented.

 If from is not NULL, and the socket is not connection-ori-
 ented, the source address of the message is filled in.

Fromlen is a value-result parameter, initialized to the
 size of the buffer associated with from, and modified on
 return to indicate the actual size of the address stored
 there.

 The recv call is normally used only on a connected socket
 (see connect(2)) and is identical to recvfrom with a NULL

from parameter. As it is redundant, it may not be sup-
 ported in future releases.

 All three routines return the length of the message on
 successful completion. If a message is too long to fit in
 the supplied buffer, excess bytes may be discarded depend-
 ing on the type of socket the message is received from
 (see socket(2)).

 If no messages are available at the socket, the receive
 calls wait for a message to arrive, unless the socket is
 nonblocking (see fcntl(2)) in which case the value -1 is
 returned and the external variable errno set to EAGAIN.
 The receive calls normally return any data available, up
 to the requested amount, rather than waiting for receipt
 of the full amount requested.

 The select(2) or poll(2) call may be used to determine
 when more data arrives.

 The flags argument to a recv call is formed by OR'ing one
 or more of the following values:

Unix man pages: recv (2) http://www.skrenta.com/rt/man/recv.2.html

1 of 5 25.10.2013 00:20

MSG_OOB
 This flag requests receipt of out-of-band data that
 would not be received in the normal data stream.
 Some protocols place expedited data at the head of
 the normal data queue, and thus this flag cannot be
 used with such protocols.

MSG_PEEK
 This flag causes the receive operation to return
 data from the beginning of the receive queue with-
 out removing that data from the queue. Thus, a
 subsequent receive call will return the same data.

MSG_WAITALL
 This flag requests that the operation block until
 the full request is satisfied. However, the call
 may still return less data than requested if a sig-
 nal is caught, an error or disconnect occurs, or
 the next data to be received is of a different type
 than that returned.

MSG_ERRQUEUE
 Receive packet from the error queue

MSG_NOSIGNAL
 This flag turns off raising of SIGPIPE on stream

sockets when the other end disappears.

MSG_ERRQUEUE
 This flag specifies that queued errors should be
 received from the socket error queue. The error is
 passed in a ancilliary message with a type depen-
 dent on the protocol (for IP IP_RECVERR). The
 error is supplied in a sock_extended_error struc-
 ture:

 #define SO_EE_ORIGIN_NONE 0
 #define SO_EE_ORIGIN_LOCAL 1
 #define SO_EE_ORIGIN_ICMP 2
 #define SO_EE_ORIGIN_ICMP6 3

 struct sock_extended_err
 {
 __u32 ee_errno; /* error number */
 __u8 ee_origin; /* where the error originated */
 __u8 ee_type; /* type */
 __u8 ee_code; /* code */
 __u8 ee_pad;
 __u32 ee_info; /* additional information */
 __u32 ee_data; /* other data */
 };

 struct sockaddr *SOCK_EE_OFFENDER(struct sock_extended_err *);

ee_errno contains the errno number of the queued

Unix man pages: recv (2) http://www.skrenta.com/rt/man/recv.2.html

2 of 5 25.10.2013 00:20

 error. ee_origin is the origin code of where the
 error originated. The other fields are protocol
 specific. SOCK_EE_OFFENDER returns a pointer to
 the address of the network object where the error
 originated from. If this address is not known, the

sa_family member of the sockaddr contains AF_UNSPEC
 and the other fields of the sockaddr are undefined.
 The payload of the packet that caused the error is
 passed as normal data.

 For local errors, no address is passed (this can be
 checked with the cmsg_len member of the cmsghdr).
 For error receives, the MSG_ERRQUEUE is set in the

msghdr. After a error has been passed, the pending
 socket error is regenerated based on the next
 queued error and will be passed on the next socket
 operation.

 The recvmsg call uses a msghdr structure to minimize the
 number of directly supplied parameters. This structure
 has the following form, as defined in <sys/socket.h>:

 struct msghdr {
 void *msg_name; /* optional address */
 socklen_t msg_namelen; /* size of address */
 struct iovec *msg_iov; /* scatter/gather array */
 size_t msg_iovlen; /* # elements in msg_iov */
 void * msg_control; /* ancillary data, see below */
 socklen_t msg_controllen; /* ancillary data buffer len */
 int msg_flags; /* flags on received message */
 };

Msg_name and msg_namelen specify the destination address
 if the socket is unconnected; msg_name may be given as a
 null pointer if no names are desired or required. Msg_iov
 and msg_iovlen describe scatter-gather locations, as dis-
 cussed in readv(2). msg_control, which has length

msg_controllen, points to a buffer for other protocol con-
 trol related messages or miscellaneous ancillary data.
 When recvmsg is called, msg_controllen should contain the
 length of the available buffer in msg_control; after the
 successful call return it will contain the length of the
 control message sequence.

 The messages are of the form:

 struct cmsghdr {
 socklen_t cmsg_len; /* data byte count, including hdr */
 int cmsg_level; /* originating protocol */
 int cmsg_type; /* protocol-specific type */
 /* followed by
 u_char cmsg_data[]; */
 };

 Ancillary data should only be accessed by the macros

Unix man pages: recv (2) http://www.skrenta.com/rt/man/recv.2.html

3 of 5 25.10.2013 00:20

 defined in cmsg(3).

 As an example, Linux uses this auxiliary data mechanism to
 pass extended errors, IP options or file descriptors over
 Unix sockets.

 The msg_flags field is set on return according to the mes-
 sage received. MSG_EOR indicates end-of-record; the data
 returned completed a record (generally used with sockets
 of type SOCK_SEQPACKET). MSG_TRUNC indicates that the
 trailing portion of a datagram was discarded because the
 datagram was larger than the buffer supplied. MSG_CTRUNC
 indicates that some control data were discarded due to
 lack of space in the buffer for ancillary data. MSG_OOB
 is returned to indicate that expedited or out-of-band data
 were received. MSG_ERRQUEUE indicates that no data was
 received but an extended error from the socket error
 queue.

RETURN VALUES
 These calls return the number of bytes received, or -1 if
 an error occurred.

ERRORS
 These are some standard errors generated by the socket
 layer. Additional errors may be generated and returned
 from the underlying protocol modules; see their manual
 pages.

EBADF The argument s is an invalid descriptor.

ENOTCONN
 The socket is associated with a connection-ori-
 ented protocol and has not been connected (see

connect(2) and accept(2)).

ENOTSOCK
 The argument s does not refer to a socket.

EAGAIN The socket is marked non-blocking and the receive
 operation would block, or a receive timeout had
 been set and the timeout expired before data was
 received.

EINTR The receive was interrupted by delivery of a sig-
 nal before any data were available.

EFAULT The receive buffer pointer(s) point outside the
 process's address space.

EINVAL Invalid argument passed.

CONFORMING TO
 4.4BSD (these function calls first appeared in 4.2BSD).

Unix man pages: recv (2) http://www.skrenta.com/rt/man/recv.2.html

4 of 5 25.10.2013 00:20

SEE ALSO
fcntl(2), read(2), select(2), getsockopt(2), socket(2),
cmsg(3)

BSD Man Page 24 July 1993 1

Unix man pages: recv (2) http://www.skrenta.com/rt/man/recv.2.html

5 of 5 25.10.2013 00:20

