
8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 1/11

multicast

MULTICAST(4) OpenBSD Programmer's Manual MULTICAST(4)

NAME

 multicast - Multicast Routing

SYNOPSIS

 options MROUTING

 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <netinet/ip_mroute.h>
 #include <netinet6/ip6_mroute.h>

 int
 getsockopt(int s, IPPROTO_IP, MRT_INIT, void *optval, socklen_t *optlen);

 int
 setsockopt(int s, IPPROTO_IP, MRT_INIT, const void *optval, socklen_t
 optlen);

 int
 getsockopt(int s, IPPROTO_IPV6, MRT6_INIT, void *optval, socklen_t
 *optlen);

 int
 setsockopt(int s, IPPROTO_IPV6, MRT6_INIT, const void *optval, socklen_t
 optlen);

DESCRIPTION

 Multicast routing is used to efficiently propagate data packets to a set
 of multicast listeners in multipoint networks. If unicast is used to
 replicate the data to all listeners, then some of the network links may
 carry multiple copies of the same data packets. With multicast routing,
 the overhead is reduced to one copy (at most) per network link.

 All multicast-capable routers must run a common multicast routing
 protocol. The Distance Vector Multicast Routing Protocol (DVMRP) was the
 first developed multicast routing protocol. Later, other protocols such
 as Multicast Extensions to OSPF (MOSPF), Core Based Trees (CBT), Protocol
 Independent Multicast - Sparse Mode (PIM-SM), and Protocol Independent
 Multicast - Dense Mode (PIM-DM) were developed as well.

http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=MULTICAST
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=MULTICAST

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 2/11

 To start multicast routing, the user must enable multicast forwarding via
 the sysctl(8) variables net.inet.ip.mforwarding and/or
 net.inet.ip6.mforwarding. The user must also run a multicast routing
 capable user-level process, such as mrouted(8). From a developer's point
 of view, the programming guide described in the Programming Guide section
 should be used to control the multicast forwarding in the kernel.

 Programming Guide
 This section provides information about the basic multicast routing API.
 The so-called ̀ àdvanced multicast API'' is described in the Advanced
 Multicast API Programming Guide section.

 First, a multicast routing socket must be open. That socket would be
 used to control the multicast forwarding in the kernel. Note that most
 operations below require certain privilege (i.e., root privilege):

 /* IPv4 */
 int mrouter_s4;
 mrouter_s4 = socket(AF_INET, SOCK_RAW, IPPROTO_IGMP);

 int mrouter_s6;
 mrouter_s6 = socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6);

 Note that if the router needs to open an IGMP or ICMPv6 socket (IPv4 or
 IPv6, respectively) for sending or receiving of IGMP or MLD multicast
 group membership messages, then the same mrouter_s4 or mrouter_s6 sockets
 should be used for sending and receiving respectively IGMP or MLD
 messages. In the case of BSD-derived kernels, it may be possible to open
 separate sockets for IGMP or MLD messages only. However, some other
 kernels (e.g., Linux) require that the multicast routing socket must be
 used for sending and receiving of IGMP or MLD messages. Therefore, for
 portability reasons, the multicast routing socket should be reused for
 IGMP and MLD messages as well.

 After the multicast routing socket is open, it can be used to enable or
 disable multicast forwarding in the kernel:

 /* IPv4 */
 int v = 1; /* 1 to enable, or 0 to disable */
 setsockopt(mrouter_s4, IPPROTO_IP, MRT_INIT, (void *)&v, sizeof(v));

 /* IPv6 */
 int v = 1; /* 1 to enable, or 0 to disable */
 setsockopt(mrouter_s6, IPPROTO_IPV6, MRT6_INIT, (void *)&v, sizeof(v));
 ...
 /* If necessary, filter all ICMPv6 messages */
 struct icmp6_filter filter;
 ICMP6_FILTER_SETBLOCKALL(&filter);
 setsockopt(mrouter_s6, IPPROTO_ICMPV6, ICMP6_FILTER, (void *)&filter,
 sizeof(filter));

 After multicast forwarding is enabled, the multicast routing socket can
 be used to enable PIM processing in the kernel if either PIM-SM or PIM-DM
 are being used (see pim(4)).

 For each network interface (e.g., physical or a virtual tunnel) that
 would be used for multicast forwarding, a corresponding multicast
 interface must be added to the kernel:

 /* IPv4 */
 struct vifctl vc;

http://resin.csoft.net/cgi-bin/man.cgi?section=8&topic=sysctl
http://resin.csoft.net/cgi-bin/man.cgi?section=8&topic=mrouted
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=pim

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 3/11

 memset(&vc, 0, sizeof(vc));
 /* Assign all vifctl fields as appropriate */
 vc.vifc_vifi = vif_index;
 vc.vifc_flags = vif_flags;
 vc.vifc_threshold = min_ttl_threshold;
 vc.vifc_rate_limit = max_rate_limit;
 memcpy(&vc.vifc_lcl_addr, &vif_local_address, sizeof(vc.vifc_lcl_addr));
 if (vc.vifc_flags & VIFF_TUNNEL)
 memcpy(&vc.vifc_rmt_addr, &vif_remote_address,
 sizeof(vc.vifc_rmt_addr));
 setsockopt(mrouter_s4, IPPROTO_IP, MRT_ADD_VIF, (void *)&vc,
 sizeof(vc));

 The vif_index must be unique per vif. The vif_flags contains the VIFF_*
 flags as defined in <netinet/ip_mroute.h>. The min_ttl_threshold
 contains the minimum TTL a multicast data packet must have to be
 forwarded on that vif. Typically, it would be 1. The max_rate_limit
 contains the maximum rate (in bits/s) of the multicast data packets
 forwarded on that vif. A value of 0 means no limit. The
 vif_local_address contains the local IP address of the corresponding
 local interface. The vif_remote_address contains the remote IP address
 for DVMRP multicast tunnels.

 /* IPv6 */
 struct mif6ctl mc;
 memset(&mc, 0, sizeof(mc));
 /* Assign all mif6ctl fields as appropriate */
 mc.mif6c_mifi = mif_index;
 mc.mif6c_flags = mif_flags;
 mc.mif6c_pifi = pif_index;
 setsockopt(mrouter_s6, IPPROTO_IPV6, MRT6_ADD_MIF, (void *)&mc,
 sizeof(mc));

 The mif_index must be unique per vif. The mif_flags contains the MIFF_*
 flags as defined in <netinet6/ip6_mroute.h>. The pif_index is the
 physical interface index of the corresponding local interface.

 A multicast interface is deleted by:

 /* IPv4 */
 vifi_t vifi = vif_index;
 setsockopt(mrouter_s4, IPPROTO_IP, MRT_DEL_VIF, (void *)&vifi,
 sizeof(vifi));

 /* IPv6 */
 mifi_t mifi = mif_index;
 setsockopt(mrouter_s6, IPPROTO_IPV6, MRT6_DEL_MIF, (void *)&mifi,
 sizeof(mifi));

 After multicast forwarding is enabled, and the multicast virtual
 interfaces have been added, the kernel may deliver upcall messages (also
 called signals later in this text) on the multicast routing socket that
 was open earlier with MRT_INIT or MRT6_INIT. The IPv4 upcalls have a
 struct igmpmsg header (see <netinet/ip_mroute.h>) with the im_mbz field
 set to zero. Note that this header follows the structure of struct ip
 with the protocol field ip_p set to zero. The IPv6 upcalls have a struct
 mrt6msg header (see <netinet6/ip6_mroute.h>) with the im6_mbz field set
 to zero. Note that this header follows the structure of struct ip6_hdr
 with the next header field ip6_nxt set to zero.

 The upcall header contains the im_msgtype and im6_msgtype fields, with
 the type of the upcall IGMPMSG_* and MRT6MSG_* for IPv4 and IPv6,

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 4/11

 respectively. The values of the rest of the upcall header fields and the
 body of the upcall message depend on the particular upcall type.

 If the upcall message type is IGMPMSG_NOCACHE or MRT6MSG_NOCACHE, this is
 an indication that a multicast packet has reached the multicast router,
 but the router has no forwarding state for that packet. Typically, the
 upcall would be a signal for the multicast routing user-level process to
 install the appropriate Multicast Forwarding Cache (MFC) entry in the
 kernel.

 An MFC entry is added by:

 /* IPv4 */
 struct mfcctl mc;
 memset(&mc, 0, sizeof(mc));
 memcpy(&mc.mfcc_origin, &source_addr, sizeof(mc.mfcc_origin));
 memcpy(&mc.mfcc_mcastgrp, &group_addr, sizeof(mc.mfcc_mcastgrp));
 mc.mfcc_parent = iif_index;
 for (i = 0; i < maxvifs; i++)
 mc.mfcc_ttls[i] = oifs_ttl[i];
 setsockopt(mrouter_s4, IPPROTO_IP, MRT_ADD_MFC,
 (void *)&mc, sizeof(mc));

 /* IPv6 */
 struct mf6cctl mc;
 memset(&mc, 0, sizeof(mc));
 memcpy(&mc.mf6cc_origin, &source_addr, sizeof(mc.mf6cc_origin));
 memcpy(&mc.mf6cc_mcastgrp, &group_addr, sizeof(mf6cc_mcastgrp));
 mc.mf6cc_parent = iif_index;
 for (i = 0; i < maxvifs; i++)
 if (oifs_ttl[i] > 0)
 IF_SET(i, &mc.mf6cc_ifset);
 setsockopt(mrouter_s4, IPPROTO_IPV6, MRT6_ADD_MFC,
 (void *)&mc, sizeof(mc));

 The source_addr and group_addr fields are the source and group address of
 the multicast packet (as set in the upcall message). The iif_index is
 the virtual interface index of the multicast interface the multicast
 packets for this specific source and group address should be received on.
 The oifs_ttl[] array contains the minimum TTL (per interface) a multicast
 packet should have to be forwarded on an outgoing interface. If the TTL
 value is zero, the corresponding interface is not included in the set of
 outgoing interfaces. Note that for IPv6 only the set of outgoing
 interfaces can be specified.

 An MFC entry is deleted by:

 /* IPv4 */
 struct mfcctl mc;
 memset(&mc, 0, sizeof(mc));
 memcpy(&mc.mfcc_origin, &source_addr, sizeof(mc.mfcc_origin));
 memcpy(&mc.mfcc_mcastgrp, &group_addr, sizeof(mc.mfcc_mcastgrp));
 setsockopt(mrouter_s4, IPPROTO_IP, MRT_DEL_MFC,
 (void *)&mc, sizeof(mc));

 /* IPv6 */
 struct mf6cctl mc;
 memset(&mc, 0, sizeof(mc));
 memcpy(&mc.mf6cc_origin, &source_addr, sizeof(mc.mf6cc_origin));
 memcpy(&mc.mf6cc_mcastgrp, &group_addr, sizeof(mf6cc_mcastgrp));
 setsockopt(mrouter_s4, IPPROTO_IPV6, MRT6_DEL_MFC,
 (void *)&mc, sizeof(mc));

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 5/11

 The following method can be used to get various statistics per installed
 MFC entry in the kernel (e.g., the number of forwarded packets per source
 and group address):

 /* IPv4 */
 struct sioc_sg_req sgreq;
 memset(&sgreq, 0, sizeof(sgreq));
 memcpy(&sgreq.src, &source_addr, sizeof(sgreq.src));
 memcpy(&sgreq.grp, &group_addr, sizeof(sgreq.grp));
 ioctl(mrouter_s4, SIOCGETSGCNT, &sgreq);

 /* IPv6 */
 struct sioc_sg_req6 sgreq;
 memset(&sgreq, 0, sizeof(sgreq));
 memcpy(&sgreq.src, &source_addr, sizeof(sgreq.src));
 memcpy(&sgreq.grp, &group_addr, sizeof(sgreq.grp));
 ioctl(mrouter_s6, SIOCGETSGCNT_IN6, &sgreq);

 The following method can be used to get various statistics per multicast
 virtual interface in the kernel (e.g., the number of forwarded packets
 per interface):

 /* IPv4 */
 struct sioc_vif_req vreq;
 memset(&vreq, 0, sizeof(vreq));
 vreq.vifi = vif_index;
 ioctl(mrouter_s4, SIOCGETVIFCNT, &vreq);

 /* IPv6 */
 struct sioc_mif_req6 mreq;
 memset(&mreq, 0, sizeof(mreq));
 mreq.mifi = vif_index;
 ioctl(mrouter_s6, SIOCGETMIFCNT_IN6, &mreq);

 Advanced Multicast API Programming Guide
 Adding new features to the kernel makes it difficult to preserve backward
 compatibility (binary and API), and at the same time to allow user-level
 processes to take advantage of the new features (if the kernel supports
 them).

 One of the mechanisms that allows preserving the backward compatibility
 is a sort of negotiation between the user-level process and the kernel:

 1. The user-level process tries to enable in the kernel the set of new
 features (and the corresponding API) it would like to use.

 2. The kernel returns the (sub)set of features it knows about and is
 willing to be enabled.

 3. The user-level process uses only that set of features the kernel has
 agreed on.

 To support backward compatibility, if the user-level process does not ask
 for any new features, the kernel defaults to the basic multicast API (see
 the Programming Guide section). Currently, the advanced multicast API
 exists only for IPv4; in the future there will be IPv6 support as well.

 Below is a summary of the expandable API solution. Note that all new
 options and structures are defined in <netinet/ip_mroute.h> and
 <netinet6/ip6_mroute.h>, unless stated otherwise.

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 6/11

 The user-level process uses new getsockopt()/setsockopt() options to
 perform the API features negotiation with the kernel. This negotiation
 must be performed right after the multicast routing socket is open. The
 set of desired/allowed features is stored in a bitset (currently, in
 uint32_t i.e., maximum of 32 new features). The new
 getsockopt()/setsockopt() options are MRT_API_SUPPORT and MRT_API_CONFIG.
 An example:

 uint32_t v;
 getsockopt(sock, IPPROTO_IP, MRT_API_SUPPORT, (void *)&v, sizeof(v));

 This would set v to the pre-defined bits that the kernel API supports.
 The eight least significant bits in uint32_t are the same as the eight
 possible flags MRT_MFC_FLAGS_* that can be used in mfcc_flags as part of
 the new definition of struct mfcctl (see below about those flags), which
 leaves 24 flags for other new features. The value returned by
 getsockopt(MRT_API_SUPPORT) is read-only; in other words,
 setsockopt(MRT_API_SUPPORT) would fail.

 To modify the API, and to set some specific feature in the kernel, then:

 uint32_t v = MRT_MFC_FLAGS_DISABLE_WRONGVIF;
 if (setsockopt(sock, IPPROTO_IP, MRT_API_CONFIG, (void *)&v, sizeof(v))
 != 0) {
 return (ERROR);
 }
 if (v & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 return (OK); /* Success */
 else
 return (ERROR);

 In other words, when setsockopt(MRT_API_CONFIG) is called, the argument
 to it specifies the desired set of features to be enabled in the API and
 the kernel. The return value in v is the actual (sub)set of features
 that were enabled in the kernel. To obtain later the same set of
 features that were enabled, use:

 getsockopt(sock, IPPROTO_IP, MRT_API_CONFIG, (void *)&v, sizeof(v));

 The set of enabled features is global. In other words,
 setsockopt(MRT_API_CONFIG) should be called right after
 setsockopt(MRT_INIT).

 Currently, the following set of new features is defined:

 #define MRT_MFC_FLAGS_DISABLE_WRONGVIF (1 << 0)/*disable WRONGVIF signals*/
 #define MRT_MFC_FLAGS_BORDER_VIF (1 << 1) /* border vif */
 #define MRT_MFC_RP (1 << 8) /* enable RP address */
 #define MRT_MFC_BW_UPCALL (1 << 9) /* enable bw upcalls */

 The advanced multicast API uses a newly defined struct mfcctl2 instead of
 the traditional struct mfcctl. The original struct mfcctl is kept as is.
 The new struct mfcctl2 is:

 /*
 * The new argument structure for MRT_ADD_MFC and MRT_DEL_MFC overlays
 * and extends the old struct mfcctl.
 */
 struct mfcctl2 {
 /* the mfcctl fields */
 struct in_addr mfcc_origin; /* ip origin of mcasts */
 struct in_addr mfcc_mcastgrp; /* multicast group associated*/

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 7/11

 vifi_t mfcc_parent; /* incoming vif */
 u_char mfcc_ttls[MAXVIFS];/* forwarding ttls on vifs */

 /* extension fields */
 uint8_t mfcc_flags[MAXVIFS];/* the MRT_MFC_FLAGS_* flags*/
 struct in_addr mfcc_rp; /* the RP address */
 };

 The new fields are mfcc_flags[MAXVIFS] and mfcc_rp. Note that for
 compatibility reasons they are added at the end.

 The mfcc_flags[MAXVIFS] field is used to set various flags per interface
 per (S,G) entry. Currently, the defined flags are:

 #define MRT_MFC_FLAGS_DISABLE_WRONGVIF (1 << 0)/*disable WRONGVIF signals*/
 #define MRT_MFC_FLAGS_BORDER_VIF (1 << 1) /* border vif */

 The MRT_MFC_FLAGS_DISABLE_WRONGVIF flag is used to explicitly disable the
 IGMPMSG_WRONGVIF kernel signal at the (S,G) granularity if a multicast
 data packet arrives on the wrong interface. Usually this signal is used
 to complete the shortest-path switch for PIM-SM multicast routing, or to
 trigger a PIM assert message. However, it should not be delivered for
 interfaces that are not set in the outgoing interface, and that are not
 expecting to become an incoming interface. Hence, if the
 MRT_MFC_FLAGS_DISABLE_WRONGVIF flag is set for some of the interfaces,
 then a data packet that arrives on that interface for that MFC entry will
 NOT trigger a WRONGVIF signal. If that flag is not set, then a signal is
 triggered (the default action).

 The MRT_MFC_FLAGS_BORDER_VIF flag is used to specify whether the Border-
 bit in PIM Register messages should be set (when the Register
 encapsulation is performed inside the kernel). If it is set for the
 special PIM Register kernel virtual interface (see pim(4)), the Border-
 bit in the Register messages sent to the RP will be set.

 The remaining six bits are reserved for future usage.

 The mfcc_rp field is used to specify the RP address (for PIM-SM multicast
 routing) for a multicast group G if we want to perform kernel-level PIM
 Register encapsulation. The mfcc_rp field is used only if the MRT_MFC_RP
 advanced API flag/capability has been successfully set by
 setsockopt(MRT_API_CONFIG).

 If the MRT_MFC_RP flag was successfully set by
 setsockopt(MRT_API_CONFIG), then the kernel will attempt to perform the
 PIM Register encapsulation itself instead of sending the multicast data
 packets to user level (inside IGMPMSG_WHOLEPKT upcalls) for user-level
 encapsulation. The RP address would be taken from the mfcc_rp field
 inside the new struct mfcctl2. However, even if the MRT_MFC_RP flag was
 successfully set, if the mfcc_rp field was set to INADDR_ANY, then the
 kernel will still deliver an IGMPMSG_WHOLEPKT upcall with the multicast
 data packet to the user-level process.

 In addition, if the multicast data packet is too large to fit within a
 single IP packet after the PIM Register encapsulation (e.g., if its size
 was on the order of 65500 bytes), the data packet will be fragmented, and
 then each of the fragments will be encapsulated separately. Note that
 typically a multicast data packet can be that large only if it was
 originated locally from the same hosts that performs the encapsulation;
 otherwise the transmission of the multicast data packet over Ethernet for
 example would have fragmented it into much smaller pieces.

http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=pim

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 8/11

 Typically, a multicast routing user-level process would need to know the
 forwarding bandwidth for some data flow. For example, the multicast
 routing process may want to time out idle MFC entries, or for PIM-SM it
 can initiate (S,G) shortest-path switch if the bandwidth rate is above a
 threshold for example.

 The original solution for measuring the bandwidth of a dataflow was that
 a user-level process would periodically query the kernel about the number
 of forwarded packets/bytes per (S,G), and then based on those numbers it
 would estimate whether a source has been idle, or whether the source's
 transmission bandwidth is above a threshold. That solution is far from
 being scalable, hence the need for a new mechanism for bandwidth
 monitoring.

 Below is a description of the bandwidth monitoring mechanism.

 o If the bandwidth of a data flow satisfies some pre-defined filter,
 the kernel delivers an upcall on the multicast routing socket to the
 multicast routing process that has installed that filter.

 o The bandwidth-upcall filters are installed per (S,G). There can be
 more than one filter per (S,G).

 o Instead of supporting all possible comparison operations (i.e., < <=
 == != > >=), there is support only for the <= and >= operations,
 because this makes the kernel-level implementation simpler, and
 because practically we need only those two. Furthermore, the missing
 operations can be simulated by secondary user-level filtering of
 those <= and >= filters. For example, to simulate !=, then we need
 to install filter ̀ b̀w <= 0xffffffff'', and after an upcall is
 received, we need to check whether ̀ m̀easured_bw != expected_bw''.

 o The bandwidth-upcall mechanism is enabled by
 setsockopt(MRT_API_CONFIG) for the MRT_MFC_BW_UPCALL flag.

 o The bandwidth-upcall filters are added/deleted by the new
 setsockopt(MRT_ADD_BW_UPCALL) and setsockopt(MRT_DEL_BW_UPCALL)
 respectively (with the appropriate struct bw_upcall argument of
 course).

 From an application point of view, a developer needs to know about the
 following:

 /*
 * Structure for installing or delivering an upcall if the
 * measured bandwidth is above or below a threshold.
 *
 * User programs (e.g. daemons) may have a need to know when the
 * bandwidth used by some data flow is above or below some threshold.
 * This interface allows the userland to specify the threshold (in
 * bytes and/or packets) and the measurement interval. Flows are
 * all packet with the same source and destination IP address.
 * At the moment the code is only used for multicast destinations
 * but there is nothing that prevents its use for unicast.
 *
 * The measurement interval cannot be shorter than some Tmin (3s).
 * The threshold is set in packets and/or bytes per_interval.
 *
 * Measurement works as follows:
 *
 * For >= measurements:
 * The first packet marks the start of a measurement interval.

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 9/11

 * During an interval we count packets and bytes, and when we
 * pass the threshold we deliver an upcall and we are done.
 * The first packet after the end of the interval resets the
 * count and restarts the measurement.
 *
 * For <= measurement:
 * We start a timer to fire at the end of the interval, and
 * then for each incoming packet we count packets and bytes.
 * When the timer fires, we compare the value with the threshold,
 * schedule an upcall if we are below, and restart the measurement
 * (reschedule timer and zero counters).
 */

 struct bw_data {
 struct timeval b_time;
 uint64_t b_packets;
 uint64_t b_bytes;
 };

 struct bw_upcall {
 struct in_addr bu_src; /* source address */
 struct in_addr bu_dst; /* destination address */
 uint32_t bu_flags; /* misc flags (see below) */
 #define BW_UPCALL_UNIT_PACKETS (1 << 0) /* threshold (in packets) */
 #define BW_UPCALL_UNIT_BYTES (1 << 1) /* threshold (in bytes) */
 #define BW_UPCALL_GEQ (1 << 2) /* upcall if bw >= threshold */
 #define BW_UPCALL_LEQ (1 << 3) /* upcall if bw <= threshold */
 #define BW_UPCALL_DELETE_ALL (1 << 4) /* delete all upcalls for s,d*/
 struct bw_data bu_threshold; /* the bw threshold */
 struct bw_data bu_measured; /* the measured bw */
 };

 /* max. number of upcalls to deliver together */
 #define BW_UPCALLS_MAX 128
 /* min. threshold time interval for bandwidth measurement */
 #define BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC 3
 #define BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC 0

 The bw_upcall structure is used as an argument to
 setsockopt(MRT_ADD_BW_UPCALL) and setsockopt(MRT_DEL_BW_UPCALL). Each
 setsockopt(MRT_ADD_BW_UPCALL) installs a filter in the kernel for the
 source and destination address in the bw_upcall argument, and that filter
 will trigger an upcall according to the following pseudo-algorithm:

 if (bw_upcall_oper IS ">=") {
 if (((bw_upcall_unit & PACKETS == PACKETS) &&
 (measured_packets >= threshold_packets)) ||
 ((bw_upcall_unit & BYTES == BYTES) &&
 (measured_bytes >= threshold_bytes)))
 SEND_UPCALL("measured bandwidth is >= threshold");
 }
 if (bw_upcall_oper IS "<=" && measured_interval >= threshold_interval) {
 if (((bw_upcall_unit & PACKETS == PACKETS) &&
 (measured_packets <= threshold_packets)) ||
 ((bw_upcall_unit & BYTES == BYTES) &&
 (measured_bytes <= threshold_bytes)))
 SEND_UPCALL("measured bandwidth is <= threshold");
 }

 In the same bw_upcall, the unit can be specified in both BYTES and
 PACKETS. However, the GEQ and LEQ flags are mutually exclusive.

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 10/11

 Basically, an upcall is delivered if the measured bandwidth is >= or <=
 the threshold bandwidth (within the specified measurement interval). For
 practical reasons, the smallest value for the measurement interval is 3
 seconds. If smaller values are allowed, then the bandwidth estimation
 may be less accurate, or the potentially very high frequency of the
 generated upcalls may introduce too much overhead. For the >= operation,
 the answer may be known before the end of threshold_interval, therefore
 the upcall may be delivered earlier. For the <= operation however, we
 must wait until the threshold interval has expired to know the answer.

EXAMPLES

 struct bw_upcall bw_upcall;
 /* Assign all bw_upcall fields as appropriate */
 memset(&bw_upcall, 0, sizeof(bw_upcall));
 memcpy(&bw_upcall.bu_src, &source, sizeof(bw_upcall.bu_src));
 memcpy(&bw_upcall.bu_dst, &group, sizeof(bw_upcall.bu_dst));
 bw_upcall.bu_threshold.b_data = threshold_interval;
 bw_upcall.bu_threshold.b_packets = threshold_packets;
 bw_upcall.bu_threshold.b_bytes = threshold_bytes;
 if (is_threshold_in_packets)
 bw_upcall.bu_flags |= BW_UPCALL_UNIT_PACKETS;
 if (is_threshold_in_bytes)
 bw_upcall.bu_flags |= BW_UPCALL_UNIT_BYTES;
 do {
 if (is_geq_upcall) {
 bw_upcall.bu_flags |= BW_UPCALL_GEQ;
 break;
 }
 if (is_leq_upcall) {
 bw_upcall.bu_flags |= BW_UPCALL_LEQ;
 break;
 }
 return (ERROR);
 } while (0);
 setsockopt(mrouter_s4, IPPROTO_IP, MRT_ADD_BW_UPCALL,
 (void *)&bw_upcall, sizeof(bw_upcall));

 To delete a single filter, use MRT_DEL_BW_UPCALL, and the fields of
 bw_upcall must be set to exactly same as when MRT_ADD_BW_UPCALL was
 called.

 To delete all bandwidth filters for a given (S,G), then only the bu_src
 and bu_dst fields in struct bw_upcall need to be set, and then just set
 only the BW_UPCALL_DELETE_ALL flag inside field bw_upcall.bu_flags.

 The bandwidth upcalls are received by aggregating them in the new upcall
 message:

 #define IGMPMSG_BW_UPCALL 4 /* BW monitoring upcall */

 This message is an array of struct bw_upcall elements (up to
 BW_UPCALLS_MAX = 128). The upcalls are delivered when there are 128
 pending upcalls, or when 1 second has expired since the previous upcall
 (whichever comes first). In an struct upcall element, the bu_measured
 field is filled in to indicate the particular measured values. However,
 because of the way the particular intervals are measured, the user should
 be careful how bu_measured.b_time is used. For example, if the filter is
 installed to trigger an upcall if the number of packets is >= 1, then

8/27/13 multicast

resin.csoft.net/cgi-bin/man.cgi?section=4&topic=multicast 11/11

 bu_measured may have a value of zero in the upcalls after the first one,
 because the measured interval for >= filters is ̀ c̀locked'' by the
 forwarded packets. Hence, this upcall mechanism should not be used for
 measuring the exact value of the bandwidth of the forwarded data. To
 measure the exact bandwidth, the user would need to get the forwarded
 packets statistics with the ioctl(SIOCGETSGCNT) mechanism (see the
 Programming Guide section) .

 Note that the upcalls for a filter are delivered until the specific
 filter is deleted, but no more frequently than once per
 bu_threshold.b_time. For example, if the filter is specified to deliver
 a signal if bw >= 1 packet, the first packet will trigger a signal, but
 the next upcall will be triggered no earlier than bu_threshold.b_time
 after the previous upcall.

SEE ALSO

 getsockopt(2), recvfrom(2), recvmsg(2), setsockopt(2), socket(2),
 icmp6(4), inet(4), inet6(4), intro(4), ip(4), ip6(4), pim(4), mrouted(8),
 sysctl(8)

AUTHORS

 The original multicast code was written by David Waitzman (BBN Labs), and
 later modified by the following individuals: Steve Deering (Stanford),
 Mark J. Steiglitz (Stanford), Van Jacobson (LBL), Ajit Thyagarajan
 (PARC), Bill Fenner (PARC).

 The IPv6 multicast support was implemented by the KAME project
 (http://www.kame.net), and was based on the IPv4 multicast code. The
 advanced multicast API and the multicast bandwidth monitoring were
 implemented by Pavlin Radoslavov (ICSI) in collaboration with Chris Brown
 (NextHop).

 This manual page was written by Pavlin Radoslavov (ICSI).

OpenBSD 5.1 May 31, 2007 OpenBSD 5.1

[Unix Hosting | OpenSource | Contact Us]
[Engineering & Automation | Software Development | Server Applications]

http://resin.csoft.net/cgi-bin/man.cgi?section=2&topic=getsockopt
http://resin.csoft.net/cgi-bin/man.cgi?section=2&topic=recvfrom
http://resin.csoft.net/cgi-bin/man.cgi?section=2&topic=recvmsg
http://resin.csoft.net/cgi-bin/man.cgi?section=2&topic=setsockopt
http://resin.csoft.net/cgi-bin/man.cgi?section=2&topic=socket
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=icmp6
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=inet
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=inet6
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=intro
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=ip
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=ip6
http://resin.csoft.net/cgi-bin/man.cgi?section=4&topic=pim
http://resin.csoft.net/cgi-bin/man.cgi?section=8&topic=mrouted
http://resin.csoft.net/cgi-bin/man.cgi?section=8&topic=sysctl
http://www.kame.net/
http://www.csoft.net/
http://www.hypertriton.com/software.html
https://hypertriton.com/mail.fcgi
http://www.hypertriton.com/software.html#eng
http://www.hypertriton.com/software.html#libs
http://www.hypertriton.com/software.html#servers

