
Making software with:

Introduction to COMPONENTS - Part 1

A Component is a graphical element in a JUCE application. It is used across JUCE
to create everything from buttons and faders to advanced menus and even entirely
new windows.

Components can be visible or invisible
and often own smaller Components as
members, these are called child Components.

For example you might have a panel with
a slider and a button on it (shown to right).
All of these elements inherit the Component class.

Components allow us to build complex, hierarchical and responsive interfaces for
different devices and screen sizes, whilst keeping the code-base clean, modular and
maintainable.

This tutorial is a relatively high level explanation of how graphical interfaces and interactive
elements are constructed. We will introduce the Component class as the fundamental
building block of graphical interfaces and explain the concepts of how to use it.

What is a Component?

For example the Introjucer window can be broken down into a series of
nested children Components (shown in red).

Parent Component

Child
Component 2

Child
Component 1

Button

The Component base class has a core set of methods and variables that we can use
to quickly design and build interactive graphical elements. The full list of Component
attributes can be found the in the Component documentation, here are just a few of the
fundamental attributes. Every class you make that Inherits the Component base class will
receive all of these features.

Every derived class from Component has:

setName (String& newName);
String getName()

A String name to refer to the
Component.

A Rectangle<int> object that
holds the size and position
of the Component relative to
its parent.

A canvas the size of the bounds
that can be used to draw to the
screen.

In built overrideable listeners to
all different Mouse events and
behaviours.

An inbuilt bool switch that gives
the Component and On/Off state.
(disabling Components also
disables all child Components).

A bool that sets whether the
Component is visible or not.

The Component that contains
this one.

Name

Bounds

Paintable
canvas

Mouse/touch
interaction

Enabled
State

Visibility

Parent
Component

The anatomy of the Component class:

Width

Paintable Area

(0, 0)

Height

setBounds (Rectangle<int> newBounds);
Rectangle<int> getBounds();
Rectangle<int> getLocalBounds();
(localBounds is the bounds rectangle with top
left (0, 0).

paint (Graphics& g) {}
Overridable function that allows you to draw
custom graphics within the bounds.

mouseDown(){}, mouseOver(){},
mouseDrag(){}, mouseMoved(){} etc;
Overrideable callback functions to handle
mouse interactions with the Component.

setEnabled (bool shouldBeEnabled);
bool isEnabled()

setVisible (bool shouldBeVisible);
bool isVisible()

Component* getParentComponent()
This returns a pointer to the parent
Component if you need to traverse the
Component hierarchy.

And many more...

https://www.juce.com/api/classComponent.html

Using Components: Resized and Paint

The creation and function of Components follows a sequence of events that allows us to
efficiently arrange and draw them on screen. This is the general Component process.

When paint() or repaint() are called, all children Components are repainted too. This
happens recursively through the hierarchy.

Child Components’ resized() function are only called if they are explicitly resized
(usually with setBounds()) in the parents resized() method.

Resized function calls happen immediately.

Paint function calls happen asynchronously to optimise drawing to the screen at the
best refresh rate.

Parent Parent

Child Child

NOTE: Child Components can be positioned to exceed the bounds of the Parent
but everything outside the parent bounds will not be drawn. If you cant see your
component make sure the bounds have been set properly in the parent’s resized
method.

Initialise Component Declare the Component as a member variable in the parent
class. This could be the Main content Component or in
another container Component class.

To activate and see the child Component within the parent
we need to call addAndMakeVisible (*childComponent)
within the constructor of the parent Component class.

This function is triggered whenever setBounds
(newBounds) or setSize (newSize) are called on the
component. The resized() function is overrideable and is
where the bounds of any child Components should be set.

This overrideable function is where custom graphics can be
designed and drawn to the screen. This is triggered once
after the Component is added and made visible and can
be called again at any time with repaint() to refresh or
animate the contents of the Component.

Add and make
visible to parent

Resized

Paint

Here is a prototypical class structure for a very basic new Component object. The
Component draws a black rectangle with a red ellipse that toggles on and off with mouse
enter events. The ellipse is drawn to the edges of the bounds rectangle.

NB: this is an inline class structure for the purposes of this tutorial.

class ToggleLightComponent : public Component
{
public:
 ToggleLightComponent (String name = “light”)
 : Component (name),
 isOn (false)
 {
 }

 void paint (Graphics& g) override
 {
 g.fillAll (Colours::black);

 if (isOn)
 {
 g.setColour (Colours::red);
 g.fillEllipse (getLocalBounds().toFloat());
 }
 }

 void resized() override
 {
 }

 void mouseEnter (const MouseEvent&) override
 {
 isOn = !isOn;
 repaint();
 }

private:
 // member variables for the Component
 bool isOn;

 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (ToggleLightComponent)
};

Publicly Inherit the Component base class

Initialise the base class with the name argument
(optional), and initialise the member variables.

This is where we draw the graphics within our
component. If the mouse is over we set the
drawing colour to red and then fill an ellipse to
the bounds of the Component.

This is called whenever the Component
is resized. We can set the bounds of child
Components relative to our new size here (in this
case we have no child Components).

Mouse event callbacks handle the mouse
behaviour, we must call repaint() to draw the
component again with the new state.

JUCE macro that catches memory leaks of
our class

Now we are going to make a parent Component class to hold multiple
ToggleLightComponents in a grid to create a spotty drawing canvas.

Our Component should work however we need to add it to the Main Component (or a
parent Component) to give it a size on the screen. We could call setSize(w, h) from the
constructor of the Component however it is usually better to set the size of the Component
in the resized() method of the parent Component (relative to the bounds of the parent).
This structure allows you to create responsive and resizeable programs.

Try running the ComponentTutorialExample in the JUCE examples folder to
see the whole structure of the program.

class ToggleLightGridComponent : public Component
{
public:
 ToggleLightGridComponent (String name = “grid”)
 : Component (name)
 {
 for (int i = 0; i < numX * numY; ++i)
 {
 addAndMakeVisible (toggleLights[i]);
 }
 }

 void resized() override
 {
 int stepX = getWidth() / numX;
 int stepY = getHeight() / numY;

 for (int x = 0; x < numX; ++x)
 {
 for (int y = 0; y < numY; ++y)
 {
 Rectangle<int> elementBounds (x * stepX, y * stepY, stepX, stepY);

 toggleLights [x + numX * y].setBounds (elementBounds);
 }
 }
 }

private:
 // member variables for the Component
 static const int numX = 20;
 static const int numY = 20;

 ToggleLightComponent toggleLights [numX * numY];

 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (ToggleLightGridComponent)
};

We must add the child Components to this
Component and make them visible (this is done
here in a single function “addAndMakeVisible”).

In this “resized” method we position our child
Components in a grid relative to the width and
height of this Component.

Array of our child ToggleLightComponents

