
Motif Reference Manual 1269

Appendix B - Data Types
This appendix summarizes the data types used as arguments or return values in
Motif toolkit and Motif Resource Manager functions. Xt and Xlib data types used
by the routines are included. For each data type, the description states the header
file that defines the type. Data types (which include simple typedefs as well as
structures and enums) are listed alphabetically. Defined symbols (for example,
constants used to specify the value of a mask or a field in a structure) or other
data types used only to set structure members are listed with the data type in
which they are used.

ArgList
An ArgList is used for setting resources in calls to widget creation routines. It is
defined as follows in <X11/Intrinsic.h>:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

The name field is typically a defined constant of the form XtNresourcename from
either <X11/Stringdefs.h> or a widget public header file. It identifies the name of
the argument to be set. The value field is an XtArgVal, a system-dependent type-
def chosen to be large enough to hold a pointer to a function. It is often not large
enough to hold a float or double.

Atom
To optimize communication with the server, a property is referenced by string
name only once, and subsequently by a unique integer ID called an Atom. Prede-
fined atoms are defined in <X11/Xatom.h> using defined symbols beginning with
XA_; other atoms can be obtained from the server by calling the Xlib function
XInternAtom(). The Motif toolkit supports an atom-caching mechanism with
XmInternAtom(). Atoms are used by the Motif protocol routines.

Boolean
A typedef from <X11/Intrinsic.h> used to indicate True (1) or False (0). Use
either the symbols TRUE or FALSE, defined in <X11/Intrinsic.h> or True or
False, defined in <X11/Xlib.h>.

Cardinal
A typedef from <X11/Intrinsic.h> used to specify any unsigned integer value.

Colormap
An XID (server resource ID) from <X11/X.h> that identifies a Colormap resource
maintained by the server. XmGetColors() and MrmFetchColorLiteral()
use Colormap values.

Appendix B: Data Types

1270 Motif Reference Manual

Cursor
A typedef in <X11/X.h> for an XID (server resource ID) that identifies a cursor
resource maintained by the server. A Cursor is used to set the menu cursor in
Motif. XmTrackingEvent() and XmTrackingLocate() also have a Cursor
parameter.

Dimension
A typedef from <X11/Intrinsic.h> used to specify an unsigned short quantity, typ-
ically used for window sizes.

Display
A structure defined in <X11/Xlib.h> that contains information about the display
the program is running on. Display structure fields should not be accessed
directly; Xlib provides a number of macros to return essential values. In Xt, a
pointer to the current Display is returned by a call to XtDisplay(). The Motif
clipboard routines and string drawing routines, among others, use Display param-
eters. This data type should not be confused with the XmDisplay widget in Motif
1.2 and later.

GC
A graphics context, which is defined in <X11/Xlib.h>. A GC is a pointer to a
structure that contains a copy of the settings in a server resource. The server
resource, in turn, contains information about how to interpret a graphics primi-
tive. A pointer to a structure of this type is returned by the Xlib call XCre-
ateGC() or the Xt call XtGetGC(). Motif string drawing routines use GC
parameters. The members of this structure should not be accessed directly.

KeyCode
A server-dependent code that describes a key that has been pressed. A KeyCode
is defined as an unsigned character in <X11/X.h>. XmTranslateKey() takes a
KeyCode argument.

KeySym
A portable representation of the symbol on the cap of a key. The Motif toolkit use
both virtual keysyms (osfkeysyms) and actual keysyms. The toolkit maps osfkey-
syms to actual keysyms. Individual KeySyms are symbols defined in <X11/key-
symdef.h>. The keycode-to-keysym lookup tables are maintained by the server,
and hence a KeySym is actually an XID. XmVaCreateSimpleOptionMenu()
and XmTranslateKey() take KeySym arguments.

Modifiers
Any bitmask that describes modifier keys. The Modifiers type and its values are
defined as follows in <X11/Intrinsic.h> and <X11/X.h>:

typedef unsigned int Modifiers;

Appendix B: Data Types

Motif Reference Manual 1271

#define ShiftMask (1<<0)
#define LockMask (1<<1)
#define ControlMask (1<<2)
#define Mod1Mask (1<<3)
#define Mod2Mask (1<<4)
#define Mod3Mask (1<<5)
#define Mod4Mask (1<<6)
#define Mod5Mask (1<<7)

XmTranslateKey() takes an argument of type Modifiers.

MrmCode
Indicates the type of a value returned by MrmFetchLiteral(). Codes are pre-
fixed with MrmRtype and are defined in <Mrm/MrmPublic.h>.

MrmCount
A typedef in <Mrm/MrmPublic.h> for specifying a count of items.

MrmHierarchy
A pointer to an Mrm hierarchy opened with MrmOpenHierarchy() or MrmO-
penHierarchyPerDisplay(). The type is defined in <Mrm/MrmPublic.h>.
The functions associate one or more UID files with the hierarchy. An MrmHier-
archy is a required argument of most of the Mrm functions.

MrmOsOpenParamPtr
A structure of operating system-dependent settings used as an argument to
MrmOpenHierarchy() and MrmOpenHierarchyPerDisplay() and
defined in <Mrm/MrmPublic.h>. As of Motif 1.2, the settings are only useful to
the UIL compiler.

MrmRegisterArg
See MrmRegisterArgList.

MrmRegisterArgList
A type used for registering application-defined procedures and identifiers with
MrmRegisterNames() and MrmRegisterNamesInHierarchy(). It is
defined as follows in <Mrm/MrmPublic.h>:

typedef struct {
String name; /* case-sensitive name */
XtPointer value; /* value/procedure to associate with name */

} MrmRegisterArg, *MrmRegisterArglist;

MrmType
Indicates the class of a widget created with MrmFetchWidget() or Mrm-
FetchWidgetOverride(). As of Motif 1.2, the types are not defined in any
of the Mrm include files, although the OSF documentation states that they are
defined in <Mrm/Mrm.h>.

Appendix B: Data Types

1272 Motif Reference Manual

Pixel
An unsigned long integer (defined in <X11/Intrinsic.h>) that serves as a lookup
key to a Colormap. If the visual type is PseudoColor, it is implemented as an
index to a Colormap; for DirectColor, the RGB values are directly coded into the
Pixel value. The Motif pixmap and color routines, as well as some Mrm func-
tions, use Pixel values.

Pixmap
An XID (server resource ID) that represents a two-dimensional array of pixels,
used as an offscreen drawable. that is, a drawable with a specified width, height,
and depth (number of planes), but no screen coordinates. The Motif pixmap rou-
tines, as well as some Mrm functions, use Pixmap parameters.

Position
A typedef from <X11/Intrinsic.h> used to specify a short quantity used for x- and
y-coordinates. The Motif string drawing routines, among others, use Position val-
ues.

Screen
A structure that describes the characteristics of a screen (one or more of which
make up a display). A pointer to a list of these structures is a member of the Dis-
play structure. A pointer to a structure of this type is returned by XtScreen()
and XGetWindowAttributes(). The Motif pixmap routines, among others,
as well as some of the Mrm functions, use Screen values. This data type should
not be confused with the Screen object in Motif 1.2.

Appendix B: Data Types

Motif Reference Manual 1273

typedef struct {
XExtData *ext_data; /* hook for extension to hang data */
struct _XDisplay *display; /* back pointer to display structure */
Window root; /* root window ID */
int width; /* width of screen */
int height; /* height of screen */
int mwidth; /* width in millimeters */
int mheight; /* height in millimeters */
int ndepths; /* number of depths possible */
Depth *depths; /* list of allowable depths on screen*/
int root_depth; /* bits per pixel */
Visual *root_visual; /* root visual */
GC default_gc; /* GC for the root visual */
Colormap cmap; /* default Colormap */
unsigned long white_pixel;
unsigned long black_pixel; /* white and black pixel values */
int max_maps; /* max Colormaps */
int min_maps; /* min Colormaps */
int backing_store; /* Never, WhenMapped, Always */
Bool save_unders;
long root_input_mask; /* initial root input mask */

} Screen;

String
A typedef for char *.

StringTable
A pointer to a list of Strings.

Time
A typedef for an unsigned long value (defined in <X11/X.h>) that contains a time
value in milliseconds. The constant CurrentTime is interpreted as the time in mil-
liseconds since the server was started. The Time data type is used in event struc-
tures and as an argument to some Motif clipboard, drag and drop, and text
selection routines.

Visual
A structure that defines a way of using color resources on a particular screen.

VoidProc
The prototype for the procedure that copies data passed by name to the clipboard.
XmClipboardBeginCopy() specifies a procedure of this type. It is defined as
follows in <Xm/CutPaste.h>:

typedef void (*VoidProc) (Widget widget, int *data_id, int *private_id,
int *reason)

Appendix B: Data Types

1274 Motif Reference Manual

VoidProc takes four arguments. The first argument, widget, is the widget passed
to the callback routine, which is the same widget as passed to XmClipboard-
BeginCopy(). The data_id argument is the ID of the data item that is returned
by XmClipboardCopy() and private_id is the private data passed to XmClip-
boardCopy(). The reason argument takes the value
XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the data must be
copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indi-
cates that the client can delete the data from the clipboard. Although the last three
parameters are pointers to integers, the values are read-only and changing them
has no effect.

Widget
A structure returned by calls to create a widget, such as XtAppInitialize(),
XtCreateWidget(), and XtCreateManagedWidget(), as well as the
Motif widget creation routines. The members of this structure should not be
accessed directly from applications; they should regard it as an opaque pointer.
Type Widget is actually a pointer to a widget instance structure. Widget code
accesses instance variables from this structure.

WidgetClass
A pointer to the widget class structure, used to identify the widget class in vari-
ous routines that create widgets or that return information about widgets. Widget
class names have the form nameWidgetClass, with the exception of the widget-
precursor classes, Object and RectObj, which have the class pointers objectClass
and rectObjClass, respectively.

WidgetList
A pointer to a list of Widgets.

Window
A resource maintained by the server, and known on the client side only by an
integer ID. In Xt, a widget’s window can be returned by the XtWindow() macro.
Given the window, the corresponding widget can be returned by XtWindow-
ToWidget(). Conversely, given a widget, the window can be deduced through
XtWindowOfObject(). The Motif clipboard and string drawing routines use
Window values.

XEvent
A union of all thirty event structures. The first member is always the type, so it is
possible to branch on the type, and do event-specific processing in each branch.
Both XmDragStart() and XmTrackingEvent() take XEvent parameters.
An XButtonPressedEvent, which is one of the event structures in the union, is
used by XmMenuPosition().

Appendix B: Data Types

Motif Reference Manual 1275

XFontSet
Specifies all of the fonts needed to display text in a particular locale. The Motif
font list entry routines can use XFontSet values.

XFontStruct
Specifies metric information (in pixels) for an entire font. This structure (defined
in <X11/Xlib.h>) is filled by means of the Xlib routines XLoadQueryFont()
and XQueryFont(). XListFontsWithInfo() also fills it, but with metric
information for the entire font only, not for each character. Some of the Motif
font list routines use XFontStructs.

typedef struct {
XExtData *ext_data; /* hook for extension to hang data */
Font fid; /* font ID for this font */
unsigned direction; /* direction the font is painted */
unsigned min_char_or_byte2; /* first character */
unsigned max_char_or_byte2; /* last character */
unsigned min_byte1; /* first row that exists */
unsigned max_byte1; /* last row that exists */
Bool all_chars_exist; /* flag if all characters have */

/* nonzero size */
unsigned default_char; /* char to print for undefined character*/
int n_properties; /* how many properties there are */
XFontProp *properties; /* pointer to array of additional *\

/* properties */
XCharStruct min_bounds; /* minimum bounds over all */

/* existing char */
XCharStruct max_bounds; /* maximum bounds over all */

/* existing char */
XCharStruct *per_char; /* first_char to last_char information */
int ascent; /* logical extent of largest character */

/* above baseline */
int descent; /* logical descent of largest character */

/* below baseline */
} XFontStruct;

The direction member is specified by one of the following constants from <X11/
X.h>:

FontLeftToRight FontRightToLeft FontChange

Appendix B: Data Types

1276 Motif Reference Manual

XImage
Describes an area of the screen. This structure (defined in <X11/Xlib.h>) is used
by XmInstallImage() and XmUninstallImage().

typedef struct _XImage {
int width, height; /* size of image in pixels */
int xoffset; /* number of pixels offset in X direction
*/
int format; /* XYBitmap, XYPixmap, ZPixmap*/
char *data; /* pointer to image data */
int byte_order; /* data byte order: LSBFirst, MSBFirst
*/
int bitmap_unit; /* quant. of scan line 8, 16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /* 8, 16, 32 */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next line */
int bits_per_pixel; /* bits per pixel (ZPixmap only) */
unsigned long red_mask; /* bits in z arrangement */
unsigned long green_mask;
unsigned long blue_mask;
char *obdata; /* hook for object routines to hang on
*/
struct funcs { /* image manipulation routines
*/

struct _XImage *(*create_image)(void);
int (*destroy_image)(struct XImage *);
unsigned long (*get_pixel)(struct XImage *, int, int);
int (*put_pixel)(struct XImage *, int, int, unsigned int,

unsigned int);
struct _XImage *(*sub_image)(struct XImage *, int, int, unsigned

int, unsigned int);
int (*add_pixel)(struct XImage *, long);

} f;
} XImage;

The format member is specified by one of the following constants defined in
<X11/X.h>:

XYBitmap /* depth 1, XYFormat */
XYPixmap /* pixmap viewed as stack of planes; depth == drawable depth
*/
ZPixmap /* pixels in scan-line order; depth == drawable depth */

Appendix B: Data Types

Motif Reference Manual 1277

byte_order and bitmap_bit_order are specified by either LSBFirst or MSBFirst,
which are defined in <X11/X.h>.

XRectangle
Specifies a rectangle. This structure (defined in <X11/Xlib.h>) is used by the
Motif string drawing routines and XmGetDisplayRect().

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

XmAllocColorProc
The prototype for the per-screen color allocation procedure which is specified
through the XmScreen resource XmNcolorAllocationProc. It is defined as fol-
lows in <Xm/Screen.h>:

typedef void (*XmAllocColorProc)(Display *display;

/* connection to the X server */
Colormap colormap;
/* Colormap in which to allocate color */
XColor *color)
/* color to allocate */

An XmAllocColorProc takes three arguments. The first display argument is the
connection to the X server. The second argument is the Colormap in which to
allocate the required color. The third color argument is where the required color
is specified and returned.

XmAnyCallbackStruct
The generic Motif callback structure. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */

} XmAnyCallbackStruct;

XmArrowButtonCallbackStruct
The callback structure passed to ArrowButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
int click_count; /* number of clicks in multi-click sequence */

} XmArrowButtonCallbackStruct;

Appendix B: Data Types

1278 Motif Reference Manual

XmButtonType
An enumerated type that specifies the type of button used in a simple menu crea-
tion routine. The valid values for the type are:

XmPUSHBUTTON XmTOGGLEBUTTON
XmRADIOBUTTON XmCHECKBUTTON
XmCASCADEBUTTON XmTITLE
XmSEPARATOR XmDOUBLE_SEPARATOR

XmButtonTypeTable
A pointer to a list of XmButtonType values.

XmClipboardPendingList
A structure used in calls to XmClipboardInquirePendingItems() to
specify a data_id/private_id pair. It is defined as follows in <Xm/CutPaste.h>:

typedef struct {
long DataId;
long PrivateId;

} XmClipboardPendingRec, *XmClipboardPendingList;

XmColorProc
The prototype for the color calculation procedure used by XmGetColorCal-
culation() and XmSetColorCalculation(). It is defined as follows in
<Xm/Xm.h>:

typedef void (*XmColorProc)(

XColor *bg_color, /* specifies the background color
*/

XColor *fg_color, /* returns the foreground color
*/

XColor *sel_color, /* returns the select color
*/

XColor *ts_color, /* returns the top shadow color
*/

XColor *bs_color) /* returns the bottom shadow color
*/

An XmColorProc takes five arguments. The first argument, bg_color, is a pointer
to an XColor structure that specifies the background color. The red, green, blue,
and pixel fields in the structure contain valid values. The rest of the arguments
are pointers to XColor structures for the colors that are to be calculated. The pro-
cedure fills in the red, green, and blue fields in these structures.

Appendix B: Data Types

Motif Reference Manual 1279

XmComboBoxCallbackStruct
The callback structure passed to ComboBox callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback */
XmString item_or_text; /* the selected item */
int item_position; /* the index of the item in the list */

} XmComboBoxCallbackStruct;

XmCommandCallbackStruct
The callback structure passed to Command widget callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* event structure that triggered callback */
XmString value; /* the string contained in the command area */
int length; /* the size of this string */

} XmCommandCallbackStruct;

XmContainerOutlineCallbackStruct
The callback structure passed to Container Outline callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Widget item; /* container item associated */

/* with event */
unsigned char new_outline_state; /* the requested state */

} XmContainerOutlineCallbackStruct;

Appendix B: Data Types

1280 Motif Reference Manual

XmContainerSelectCallbackStruct
The callback structure passed to Container Select callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
WidgetList selected_items; /* the list of selected items */
int selected_item_count; /* the number of selected items */
unsigned char auto_selection_type; /* type of selection event */

} XmContainerSelectCallbackStruct;

XmConvertCallbackStruct
The callback structure passed to the XmNconvertCallback routines of widgets
when they are asked to convert a selection. It is defined as follows in <Xm/Trans-
fer.h>:

typedef struct {
int reason; /* reason that callback is invoked */
XEvent *event; /* event that triggered callback */
Atom selection; /* requested conversion selection */
Atom target; /* the conversion target */
XtPointer source_data; /* selection source information */
XtPointer location_data; /* information on data to be transferred */
int flags; /* input status of the conversion */
XtPointer parm; /* parameter data for the target */
int parm_format; /* format of parameter data */
unsigned long parm_length; /* number of elements in parameter data */
Atom parm_type; /* the type of the parameter data */
int status; /* output status of the conversion */
XtPointer value; /* returned conversion data */
Atom type; /* type of conversion data returned */
int format; /* format of the conversion data */
unsigned long length; /* number of elements in conversion data */

} XmConvertCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1281

XmCutPasteProc
The prototype for the procedure that copies data passed by name to the clipboard.
XmClipboardStartCopy() specifies a procedure of this type. It is defined as
follows in <Xm/CutPaste.h>:

typedef void (*XmCutPasteProc) (Widget widget, long *data_id, long
*private_id, int *reason)

An XmCutPasteProc takes four arguments. The first argument, widget, is the
widget passed to the callback routine, which is the same widget as passed to
XmClipboardBeginCopy(). The data_id argument is the ID of the data item
that is returned by XmClipboardCopy() and private_id is the private data
passed to XmClipboardCopy(). The reason argument takes the value
XmCR_CLIPBOARD_DATA_REQUEST, which indicates that the data must be
copied to the clipboard, or XmCR_CLIPBOARD_DATA_DELETE, which indi-
cates that the client can delete the data from the clipboard. Although the last three
parameters are pointers, the values are read-only and changing them has no
effect.

XmDestinationCallbackStruct
The callback structure passed to the XmNdestinationCallback routines of widgets
when they are the destination of a data transfer. It is defined as follows in <Xm/
Transfer.h>:

typedef struct {
int reason; /* reason that callback is invoked */
XEvent *event; /* event that triggered callback */
Atom selection; /* requested selection type, as an Atom */
XtEnum operation; /* the type of transfer requested */
int flags; /* whether destination and source are same*/
XtPointer transfer_id; /* unique identifier for the request */
XtPointer destination_data; /* information about the destination */
XtPointer location_data; /* information about the data */
Time time; /* time when transfer operation started */

} XmDestinationCallbackStruct;

Appendix B: Data Types

1282 Motif Reference Manual

XmDirection
An enumerated type that specifies a direction, used either in laying out compo-
nents of a widget, or in rendering compound strings. The valid values for the type
are:

XmRIGHT_TO_LEFT_TOP_TO_BOTTOM
XmLEFT_TO_RIGHT_TOP_TO_BOTTOM
XmRIGHT_TO_LEFT_BOTTOM_TO_TOP
XmLEFT_TO_RIGHT_BOTTOM_TO_TOP
XmRIGHT_TO_LEFT
XmLEFT_TO_RIGHT
XmTOP_TO_BOTTOM_RIGHT_TO_LEFT
XmBOTTOM_TO_TOP_RIGHT_TO_LEFT
XmTOP_TO_BOTTOM_LEFT_TO_RIGHT
XmBOTTOM_TO_TOP_LEFT_TO_RIGHT
XmTOP_TO_BOTTOM
XmBOTTOM_TO_TOP
XmDEFAULT_DIRECTION

XmDisplayCallbackStruct
The callback structure passed to Display XmNnoFontCallback and XmNnoRen-
ditionCallback callback routines. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called
*/
XEvent *event; /* event that triggered callback */
XmRendition rendition; /* rendition with a missing font */
char *font_name; /* font which is not loadable */
XmRenderTable render_table; /* render table with missing rendition
*/
XmString tag; /* tag of the missing rendition */

} XmDisplayCallbackStruct;

XmDragDropFininshCallbackStruct
The callback structure passed to the XmNdragDropFinishCallback of a Drag-
Context object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* the reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which operation completed */

} XmDragDropFinishCallbackStruct, *XmDragDropFinishCallback;

Appendix B: Data Types

Motif Reference Manual 1283

XmDragMotionCallbackStruct
The callback structure passed to the XmNdragMotionCallback of a DragContext
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDragMotionCallbackStruct, *XmDragMotionCallback;

XmDragProcCallbackStruct
The callback structure passed to the XmNdragProc of a drop site. It is defined as
follows in <Xm/DropSMgr.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext widget associated */

/* with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
Boolean animate; /* toolkit or receiver does animation */

} XmDragProcCallbackStruct, *XmDragProcCallback;

XmDrawingAreaCallbackStruct
The callback structure passed to DrawingArea callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback; */

/* for XmNresizeCallback, this is NULL */
Window window; /* the widget’s window */

} XmDrawingAreaCallbackStruct;

Appendix B: Data Types

1284 Motif Reference Manual

XmDrawnButtonCallbackStruct
The callback structure passed to DrawnButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback was called */
XEvent *event; /* event that triggered callback */
Window window; /* ID of window in which event occurred */
int click_count; /* number of multi-clicks */

} XmDrawnButtonCallbackStruct;

XmDropFinishCallbackStruct
The callback structure passed to the XmNdropFinishCallback of a DragContext
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drop completed */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
unsigned char dropAction; /* drop, cancel, help, or interrupt */
unsigned char completionStatus; /* success or failure */

} XmDropFinishCallbackStruct, *XmDropFinishCallback;

XmDropProcCallbackStruct
The callback structure passed to the XmNdropProc of a drop site. It is defined as
follows in <Xm/DropSMgr.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
Widget dragContext; /* DragContext widget associated */

/* with operation */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dropSiteStatus; /* valid or invalid */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropAction; /* drop or help */

} XmDropProcCallbackStruct, *XmDropProcCallback;

Appendix B: Data Types

Motif Reference Manual 1285

XmDropSiteEnterCallbackStruct
The callback structure passed to the XmNdropSiteEnterCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */

} XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

XmDropSiteLeaveCallbackStruct
The callback structure passed to the XmNdropSiteLeaveCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time of crossing event */

} XmDropSiteLeaveCallbackStruct, *XmDropSiteLeaveCallback;

XmDropStartCallbackStruct
The callback structure passed to the XmNdropStartCallback of a DragContext
object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* time at which drag completed */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */
unsigned char dropAction; /* drop, cancel, help, or interrupt */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
Window window; /* internal: not documented */
Atom icchandle; /* internal: not documented */

} XmDropStartCallbackStruct, *XmDropStartCallback;

Appendix B: Data Types

1286 Motif Reference Manual

XmDropTransferEntryRec
A structure that specifies the targets of a drop operation for a Drop Transfer
object. It is defined as follows in <Xm/DropTrans.h>:

typedef struct {
XtPointer client_data; /* data passed to the transfer proc */
Atom target; /* target format of the transfer */

} XmDropTransferEntryRec, *XmDropTransferEntry;

XmDropTransferEntry
See XmDropTransferEntryRec.

XmFileSelectionBoxCallbackStruct
The callback structure passed to FileSelectionBox callback routines. It is defined
as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString value; /* current value of XmNdirSpec resource */
int length; /* number of bytes in value member */
XmString mask; /* current value of XmNdirMask resource */
int mask_length; /* number of bytes in mask member */
XmString dir; /* current base directory */
int dir_length; /* number of bytes in dir member */
XmString pattern; /* current search pattern */
int pattern_length; /* number of bytes in pattern member */

} XmFileSelectionBoxCallbackStruct;

XmFontContext
A typedef for a font list context that lets an application access the font list entries
and font list tags in a font list. This data type is an opaque structure returned by a
call to XmFontListInitFontContext(), and is used in subsequent calls to
XmFontListGetNextEntry(), XmFontListGetNextFont() and
XmFontListFreeFontContext().

XmFontList
A font list contains entries that describe the fonts that are in use. In Motif 1.1,
each entry associates a font and a character set. In Motif 1.2, each entry consists
of a XmFontListEntry and an associated tag, where the XmFontListEntry speci-
fies a font or a font set. XmFontList is an opaque data type used in calls to font
list routines and string manipulation routines. When a Motif compound string is
displayed, the font list tag is used to match the string with a font or font set, so
that the compound string is displayed appropriately. The font list tag
XmFONTLIST_DEFAULT_TAG causes compound strings to be displayed using
the font for the current locale.

Appendix B: Data Types

Motif Reference Manual 1287

To specify a font list in a resource file, use the following syntax:

resource_spec: font_entry [, font_entry] ...

The value specification consists of at least one font list entry, with multiple
entries separated by commas. Each font_entry specifies a font or a font set and
an optional font list entry tag. Use the following syntax to specify a single font:

font_name [= font_list_entry_tag]

To specify the optional tag for a single font, separate the font_name and the
font_list_entry_tag by an equal sign (=). Use the following syntax to specify a
font set:

font_name [; font_name] ... : [font_list_entry_tag]

Separate multiple font_names with semicolons and end the specification with a
colon, followed by the optional tag. A font_name is an X Logical Font Descrip-
tion (XLFD) string. If a font_list_entry_tag is not specified for an entry,
XmFONTLIST_DEFAULT_TAG is used.

In Motif 2.0 and later, the XmFontList is considered obsolete, and is replaced by
the XmRenderTable. The XmFontList type is maintained for backwards compat-
ibility, and is implemented through a render table.

XmFontListEntry
In Motif 1.2, a font list entry is an element of an XmFontList that specifies a font
or a font set. Each XmFontListEntry is associated with a font list entry tag.
XmFontListEntry is an opaque type.

In Motif 2.0 and later, the XmFontList and XmFontListEntry are considered
obsolete, and are replaced by the XmRenderTable and XmRendition object
respectively. The XmFontList and XmFontListEntry types are maintained for
backwards compatibility, and are implemented directly through the render table
and rendition object.

XmFontType
An enumerated type that specifies the type of entry in a XmFontListEntry. It is
defined as follows in <Xm/Xm.h>:

typedef enum {
XmFONT_IS_FONT, /* specifies a font */
XmFONT_IS_FONTSET /* specifies a font set */
XmFONT_IS_XFT /* specifies an XFT font */

} XmFontType;

Appendix B: Data Types

1288 Motif Reference Manual

XmHighlightMode
An enumerated type that defines the kind of text highlighting that results from
calls to XmTextSetHighlight() and XmTextFieldSetHighlight(). It
is defined as follows in <Xm/Xm.h>:

typedef enum {
XmHIGHLIGHT_NORMAL, /* no highlighting */
XmHIGHLIGHT_SELECTED, /* highlight in reverse video */
XmHIGHLIGHT_SECONDARY_SELECTED
 /* highlight by underlining */
XmSEE_DETAIL /* unused except by abortive */

/* Motif 2.0 CSText widget */
} XmHighlightMode;

XmICCEncodingStyle
An enumerated type which specifies the way in which compound string tables are
converted to and from a text property. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmSTYLE_STRING = XStringStyle,
XmSTYLE_COMPOUND_TEXT = XCompoundTextStyle,
XmSTYLE_TEXT = XTextStyle,
XmSTYLE_STANDARD_ICC_TEXT = XStdICCTextStyle,
XmSTYLE_LOCALE = 32,
XmSTYLE_COMPOUND_STRING

} XmICCEncodingStyle;

XmIncludeStatus
A typedef for unsigned char that is used to define the way in which compound
strings are parsed when a ParseMapping object is applied to an input stream. Var-
iables of this type can have the following values:

XmINSERT /* concatenate XmNsubstitute value to output */
/* parsing is continued */

XmINVOKE /* result determined by XmNinvokeParseProc */
XmTERMINATE /* concatenate XmNsubstitute value to output */

/* parsing is terminated */

XmKeySymTable
A pointer to a list of KeySyms.

Appendix B: Data Types

Motif Reference Manual 1289

XmListCallbackStruct
The callback structure passed to List widget callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString item; /* item most recently selected at */

/* the time event occurred */
int item_length; /* number of bytes in item member*/
int item_position; /* item position in XmNitems array*/
XmString *selected_items; /* list of items selected at the */

/* time event occurred */
int selected_item_count; /* number of items in */

/* selected_items */
int *selected_item_positions; /* array of integers marking */

/* selected items */
char selection_type; /* type of the most recent */

/* selection */
char auto_selection_type; /* 2.0 or later: automatic */

/* selection type */
} XmListCallbackStruct;

The structure members event, item, item_length, and item_position are valid for
any value of reason. The structure members selected_items,
selected_item_count, and selected_item_ positions are valid when the reason
field has a value of XmCR_MULTIPLE_SELECT or
XmCR_EXTENDED_SELECT. The structure member selection_type is valid
only when the reason field is XmCR_EXTENDED_SELECT.

For the strings pointed to by item and selected_items, as well as for the integers
pointed to by selected_item_positions, storage is overwritten each time the call-
back is invoked. Applications that need to save this data should make their own
copies of it.

selected_item_positions is an integer array. The elements of the array indicate the
positions of each selected item within the List widget’s XmNitems array.

selection_type specifies what kind of extended selection was most recently made.
One of three values is possible, defined in <Xm/List.h>:

XmINITIAL /* selection was the initial selection */
XmMODIFICATION /* selection changed an existing selection */
XmADDITION /* selection added non-adjacent items to an */

/* existing selection */

Appendix B: Data Types

1290 Motif Reference Manual

auto_selection_type specifies at what point within the selection the user is. Possi-
ble values, defined in <Xm/Xm.h>:

XmAUTO_UNSET XmAUTO_BEGIN
XmAUTO_MOTION XmAUTO_CANCEL
XmAUTO_NO_CHANGE XmAUTO_CHANGE

XmMergeMode
An enumerated type that specifies the way in which renditions are merged into a
render table. The valid values for the type are:

XmSKIP XmMERGE_REPLACE
XmMERGE_OLD XmMERGE_NEW
XmDUPLICATE

XmDUPLICATE is an internal value used in mapping XmFontList and
XmFontListEntry types to the render table types of Motif 2.0 and later.

XmNavigationType
An enumerated type that specifies the type of keyboard navigation associated
with a widget. The valid values for the type are:

XmNONE XmTAB_GROUP
XmSTICKY_TAB_GROUP XmEXCLUSIVE_TAB_GROUP

XmNotebookCallbackStruct
The callback structure passed to Notebook selection callback routines. It is
defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* points to event structure */

/* that triggered callback */
int page_number; /* current logical page number */
Widget page_widget; /* widget associated with */

/* current logical page number */
int prev_page_number; /* previous logical page number */
Widget prev_page_widget; /* widget associated with */

/* previous logical page number */
} XmNotebookCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1291

XmNotebookPageInfo
Specifies a structure passed to the function XmNotebookGetPageInfo() in
order to retrieve information about a Notebook page. It is defined as follows in
<Xm/Notebook.h>:

typedef struct {
int page_number; /* logical page number */
Widget page_widget; /* widget ID of a page child */
Widget status_area_widget; /* widget ID of a status area child */
Widget major_tab_widget; /* widget ID of a major tab child */
Widget minor_tab_widget; /* widget ID of a minor tab child */

} XmNotebookPageInfo;

XmOffset
A long integer that represents the units used in calculating the offsets into a
widget’s instance data. The type is used internally to Motif. See also XmOff-
setPtr.

XmOffsetModel
An enumerated type that specifies whether tabs are calculated at absolute offsets,
or relative to the previous tab. The valid values for the type are:

XmABSOLUTE XmRELATIVE

XmOffsetPtr
A pointer to an XmOffset value, which is returned by a calls to XmRe-
solveAllPartOffsets() and XmResolvePartOffsets().

XmOperationChangedCallbackStruct
The callback structure passed to the XmNoperationChangedCallback of a Drag-
Context object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timeStamp; /* timestamp of logical event */
unsigned char operation; /* current operation */
unsigned char operations; /* supported operations */
unsigned char dropSiteStatus; /* valid, invalid, or none */

} XmOperationChangedCallbackStruct, *XmOperationChangedCallback;

XmParseMapping
A typedef for a parse mapping object that lets an application control the way in
which an input stream of bytes is converted into the components or segments
within a compound string. This data type is an opaque structure returned by a call
to XmParseMappingCreate(), and is placed into an XmParseTable and used
in subsequent calls to the string manipulation routines: XmStringParse-

Appendix B: Data Types

1292 Motif Reference Manual

Text(), XmStringTableParseStringArray(), and XmStringTable-
Unparse(), and XmStringUnparse().

XmParseModel
An enumerated type which specifies how non-text components of a compound
string are unparsed. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmOUTPUT_ALL,
XmOUTPUT_BETWEEN,
XmOUTPUT_BEGINNING,
XmOUTPUT_END,
XmOUTPUT_BOTH

} XmParseModel;

This data type is used in calls to the following compound string routines:
XmStringTableUnparse(), and XmStringUnparse().

XmParseProc
A procedure within an XmParseMapping object for controlling the way in which
an input stream is parsed into a compound string. It is defined as follows in <Xm/
Xm.h>:

typedef XmIncludeStatus (*XmParseProc) (XtPointer *in_out,
XtPointer text_end,
XmTextType type,
XmStringTag locale_tag,
XmParseMapping entry,
int pattern_length,
XmString *str_include,
XtPointer call_data);

XmParseTable
A typedef for an array of parse mapping objects, used for parsing an input stream
into a compound strings.

typedef XmParseMapping *XmParseTable;

XmPushButtonCallbackStruct
The callback structure passed to PushButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int click_count; /* number of multi-clicks */

} XmPushButtonCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1293

XmPopupHandlerCallbackStruct
The callback structure passed to Popup Handler callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason the callback is invoked */
XEvent *event; /* event that triggered callback */
Widget menuToPost; /* the menu to post */
Boolean postIt; /* whether to continue posting */
Widget target; /* manager descendant issuing request */

} XmPopupHandlerCallbackStruct;

XmPrintShellCallbackStruct
The callback structure passed to PrintShell callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that the callback is invoked */
XEvent *event; /* event that triggered the callback */
XPContext context; /* X Print Context */
Boolean last_page; /* whether this is the last page */
XtPointer detail; /* PDM selection */

} XmPrintShellCallbackStruct;

XmQualifyProc
The prototype for the qualification procedure that produces a qualified directory
mask, base directory, and search pattern for the directory and file search proce-
dures in a FileSelectionBox. The XmNqualifySearchDataProc resource specifies
a procedure of this type, which is defined as follows in <Xm/FileSB.h>:

typedef void (*XmQualifyProc) (Widget widget, XtPointer input_data, XtPointer
output_data)

An XmQualifyProc takes three arguments. The first argument, widget, is the
FileSelectionBox widget. The input_data argument is a pointer to an XmFileSe-
lectionBoxCallbackStruct that contains input data to be qualified. The
output_data argument is a pointer to an XmFileSelectionBoxCallbackStruct that
is to be filled in by the qualification procedure.

XmRendition
An opaque data structure, implemented as a pseudo-widget, which encapsulates
the resources required to render a compound string. This data type is returned by
a call to XmRenditionCreate(), and is used in subsequent calls to the fol-
lowing routines: XmRenderTableAddRenditions(), XmRendition-
Free(), XmRenditionRetrieve(), XmRenditionUpdate().

Appendix B: Data Types

1294 Motif Reference Manual

XmRenderTable
An opaque data structure, representing a list of XmRendition objects, used to
render compound strings. Typically used as the XmNrenderTable resource of a
widget, the type us used in calls to the following routines: XmRenderTable-
Copy(), XmRenderTableFree(), XmRenderTableGetRendition(),
XmRenderTableGetRenditions(), XmRenderTableGetTags(),
XmRenderTableRemoveRenditions().

XmRepTypeEntry
A pointer to a representation type entry structure which contains information
about the value names and values for an enumerated type. The Motif representa-
tion type manager routines use values of this type, which is defined as follows in
<Xm/RepType.h>:

typedef struct {
String rep_type_name; /* name of representation type */
String *value_names; /* array of value names */
unsigned char *values; /* array of numeric values */
unsigned char num_values; /* number of values */
Boolean reverse_installed; /* reverse converter installed flag */
XmRepTypeId rep_type_id; /* representation type ID */

} XmRepTypeEntryRec, *XmRepTypeEntry, XmRepTypeListRec,
*XmRepTypeList;

XmRepTypeId
An unsigned short that specifies the identification number of a representation
type registered with the representation type manager. The representation type
manager routines use values of this type.

XmRepTypeList
See XmRepTypeEntry.

XmRowColumnCallbackStruct
The callback structure passed to RowColumn callback routines. It is only used by
map and unmap callbacks, and is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Widget widget; /* ID of activated RowColumn item */
char *data; /* value of application’s client data */
char *callbackstruct; /* created when item is activated */

} XmRowColumnCallbackStruct;

widget, data, and callbackstruct are set to NULL.

Appendix B: Data Types

Motif Reference Manual 1295

XmScaleCallbackStruct
The callback structure passed to Scale widget callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int value; /* new value of the slider */

} XmScaleCallbackStruct;

XmScreenColorProc
The prototype for the per-screen color calculation procedure which is specified
through the XmScreen resource XmNcolorCalculationProc. It is defined as fol-
lows in <Xm/Screen.h>:

typedef void (*XmScreenColorProc)(

Screen *screen, /* screen of top-level window */
XColor *bg_color, /* specifies the background color */
XColor *fg_color, /* returns the foreground color */
XColor *sel_color, /* returns the select color */
XColor *ts_color, /* returns the top shadow color */
XColor *bs_color) /* returns the bottom shadow color */

An XmScreenColorProc takes six arguments. The first argument is a pointer to a
screen object. The second argument, bg_color, is a pointer to an XColor structure
that specifies the background color. The red, green, blue, and pixel fields in the
structure contain valid values. The rest of the arguments are pointers to XColor
structures for the colors that are to be calculated. The procedure fills in the red,
green, and blue fields in these structures.

XmScrollBarCallbackStruct
The callback structure passed to ScrollBar callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int value; /* value of the slider’s new location */
int pixel; /* coordinate where selection occurred */

} XmScrollBarCallbackStruct;

Appendix B: Data Types

1296 Motif Reference Manual

XmSearchProc
The prototype for a search procedure that searches the directories or files in a
FileSelectionBox. The XmNdirSearchProc and XmNfileSearchProc resources
specify procedures of this type, which is defined as follows in <Xm/FileSB.h>:

typedef void (*XmSearchProc) (Widget widget, XtPointer search_data)

An XmSearchProc takes two arguments. The first argument, widget, is the
FileSelectionBox widget. The search_data argument is a pointer to an XmFileSe-
lectionBoxCallbackStruct that contains the information for performing a search.

XmSecondaryResourceData
A structure that specifies information about secondary resources associated with
a widget class. XmGetSecondaryResourceData() returns an array of these
values. The type is defined as follows in <Xm/Xm.h>:

typedef struct {
XmResourceBaseProc base_proc;
XtPointer client_data;
String name;
String res_class;
XtResourceList resources;
Cardinal num_resources;

} XmSecondaryResourceDataRec, *XmSecondaryResourceData;

XmSelectionBoxCallbackStruct
The callback structure passed to SelectionBox callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
XmString value; /* selection string that was either chosen */

/* from the SelectionBox list or typed in */
int length; /* number of bytes of value */

} XmSelectionBoxCallbackStruct;

XmSelectionCallbackStruct
The callback structure passed to routines which are responsible for data transfer
from the primary selection. The function XmTransferValue() takes as its
third parameter a procedure which is responsible for inserting data into the desti-

Appendix B: Data Types

Motif Reference Manual 1297

nation. The procedure receives a pointer to an XmSelectionCallbackStruct as
callback data when invoked. It is defined as follows in <Xm/Transfer.h>:

typedef struct {
int reason; /* reason the callback was invoked */
XEvent *event; /* event which triggered callback */
Atom selection; /* selection that has been converted *
Atom target; /* target for which conversion requested */
Atom type; /* type of the selection value */
XtPointer transfer_id; /* unique identifier for transfer operation */
int flags; /* unused: pass constant */

/* XmSELECTION_DEFAULT */
int remaining; /* number of transfers remaining in */

/* operation */
XtPointer value; /* the data transferred in this request */
unsigned long length; /* the number of elements in the value */
int format; /* size of each element in the value */

} XmSelectionCallbackStruct;

XmSpinBoxCallbackStruct
The callback structure passed to SpinBox callback routines. It is defined as fol-
lows in <Xm/Xm.h>:

typedef struct {
int reason; /* the reason that the callback was called */
XEvent *event; /* points to event that triggered callback */
Widget widget; /* the textual child affected by callback */
Boolean doit; /* whether to perform the changes */
int position; /* specifies the index of the next value */
XmString value; /* specifies the next value */
Boolean crossed_boundary; /* whether the SpinBox has wrapped
*/

} XmSpinBoxCallbackStruct;

XmString
The data type for Motif compound strings. In Motif 1.2, a compound string is
composed of one or more segments, where each segment can contain a font list
element tag, a string direction, and a text component. The font list element tag
XmFONTLIST_DEFAULT_TAG specifies a text segment encoded in the current
locale. In Motif 1.1, compound strings use character set identifiers rather than
font list element tags. The character set identifier for a compound string can have
the value XmSTRING_DEFAULT_CHARSET, which takes the character set
from the current language environment, but this value may be removed from
future versions of Motif.

Appendix B: Data Types

1298 Motif Reference Manual

XmStringCharSet
A typedef for char * that is used to define the character set of a compound string
in Motif 1.1. Variables of this type can have the following values, among others:

XmSTRING_ISO8859_1
XmSTRING_OS_CHARSET
XmSTRING_DEFAULT_CHARSET

XmSTRING_DEFAULT_CHARSET specifies the character set from the current
language environment, but this value may be removed from future versions of
Motif.

XmStringCharSetTable
A pointer to a list of XmStringCharSets.

XmStringComponentType
An unsigned char value that specifies the type of component in a compound
string segment. Values of this type are returned by calls to XmStringGet-
NextComponent() and XmStringPeekNextComponent(). The valid val-
ues for the type are:

XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG
/* font list element tag component */
/* obsolete in Motif 2.0 */

XmSTRING_COMPONENT_CHARSET
/* character set identifier component; */
/* obsolete in Motif 1.2 */

XmSTRING_COMPONENT_TEXT /* text component */
XmSTRING_COMPONENT_LOCALE_TEXT
 /* locale-encoded text component */
XmSTRING_COMPONENT_DIRECTION
 /* direction component */
XmSTRING_COMPONENT_SEPARATOR
 /* separator component */
XmSTRING_COMPONENT_END /* last component in string */
XmSTRING_COMPONENT_UNKNOWN
 /* unknown component */
XmSTRING_COMPONENT_LOCALE
 /* the locale specifier */
XmSTRING_COMPONENT_WIDECHAR_TEXT
 /* widechar text component */
XmSTRING_COMPONENT_LAYOUT_PUSH
 /* stacked layout direction */
XmSTRING_COMPONENT_LAYOUT_POP
 /* unstacked layout component */

Appendix B: Data Types

Motif Reference Manual 1299

XmSTRING_COMPONENT_RENDITION_BEGIN
 /* beginning of rendition */
XmSTRING_COMPONENT_RENDITION_END
 /* end of rendition */
XmSTRING_COMPONENT_TAG /* charset/font list tag component */
XmSTRING_COMPONENT_TAB /* tab component */

XmStringContext
A typedef for a string context that lets an application access the components or
segments within a compound string. This data type is an opaque structure
returned by a call to XmStringInitContext(), and is used in subsequent
calls to the four other string context routines: XmStringFreeContext(),
XmStringGetNextSegment(), XmStringGetNextComponent(), and
XmStringPeekNextComponent().

XmStringDirection
An unsigned char used for determining the direction in which a compound string
is displayed. The type is used in calls to XmStringDirectionCreate() and
XmStringSegmentCreate(). The valid values for the type are:

XmSTRING_DIRECTION_L_TO_R
XmSTRING_DIRECTION_R_TO_L
XmSTRING_DIRECTION_DEFAULT

XmStringTable
An opaque typedef for XmString * that is used for arrays of compound strings.

XmStringTag
A typedef for char * that is used to specify the tag which identifies components
or segments within a compound string. This data type is used in calls to the fol-
lowing compound string routines: XmRenderTableCopy(), XmRenderTa-
bleGetRendition(), XmRenderTableGetRenditions(),
XmRenderTableGetTags(), XmRenderTableRemoveRenditions(),
XmRenditionCreate(), XmRenditionRetrieve(), XmStringGener-
ate(), XmStringParseText(), XmStringPutRendition(),
XmStringTableParseStringArray(), XmStringTableUnparse(),
and XmStringUnparse().

XmTab
Specifies a tab stop, which is used to lay out compound strings within a columns.
This data type is an opaque structure returned by a call to XmTabCreate(), and
is used in calls to the following tab routines: XmTabGetValues(), XmTab-
Free(), XmTabListInsertTabs()

Appendix B: Data Types

1300 Motif Reference Manual

XmTabList
Specifies a list of tab stops, which are used to lay out compound strings within a
columns. This data type is an opaque structure returned by a call to XmTabLis-
tInsertTabs(), and is used in calls to the following tab routines: XmTab-
ListReplacePositions(), XmTabListRemoveTabs(),
XmTabListGetTab(), XmTabListTabCount(), XmTabListCopy(),
XmTabListFree(), and XmTabListInsertTabs().

XmTextBlockRec
A structure that specifies information about a block of text in a Text or TextField
widget. The text field in an XmTextVerifyCallbackStruct points to a structure of
this type, which is defined as follows in <Xm/Xm.h>:

typedef struct {
char *ptr; /* pointer to the text to insert */
int length; /* length of this text */
XmTextFormat format; /* text format (e.g., FMT8BIT, FMT16BIT) */

} XmTextBlockRec, *XmTextBlock;

XmTextBlockRecWcs
A structure that specifies information about a block of text in wide-character for-
mat in a Text or TextField widget. The text field in an XmTextVerifyCallback-
StructWcs points to a structure of this type, which is defined as follows in <Xm/
Xm.h>:

typedef struct {
wchar_t *wcsptr; /* pointer to text to insert */
int length; /* length of this text */

} XmTextBlockRecWcs, *XmTextBlockWcs;

XmTextDirection
An enumerated type that specifies the search direction in calls to XmTextFind-
String() and XmTextFindStringWcs(). It is defined as follows in <Xm/
Xm.h>:

typedef enum {
XmTEXT_FORWARD, /* search forward */
XmTEXT_BACKWARD /* search backward */

} XmTextDirection;

XmTextPosition
A long integer, used by Text and TextField routines for determining the position
of a character inside the text string.

XmTextSource
A pointer to an opaque structure that specifies a text source. The type is used in
calls to XmTextGetSource() and XmTextSetSource().

Appendix B: Data Types

Motif Reference Manual 1301

XmTextType
An enumerated type which specifies the type of data contained within an input
stream. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmCHARSET_TEXT,
XmMULTIBYTE_TEXT,
XmWIDECHAR_TEXT,
XmNO_TEXT

} XmTextType;

This data type is used in calls to the following compound string routines:
XmParseMappingGetValues(), XmParseMappingSetValues(),
XmStringGenerate(), XmStringParseText(), XmStringTa-
bleParseStringArray(), XmStringTableUnparse(), and XmStrin-
gUnparse().

XmTextVerifyCallbackStruct
The callback structure passed to the XmNlosingFocusCallback, XmNmodifyVer-
ifyCallback, and XmNmotionVerifyCallback callback routines of Text and Text-
Field widgets. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False) */
long currInsert; /* the insert cursor’s current position */
long newInsert; /* desired new position of insert cursor */
long startPos; /* start of text to change */
long endPos; /* end of text to change */
XmTextBlock text; /* describes the text to insert */

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

start_pos specifies the location at which to start modifying text. start_pos is
unused if the callback resource is XmNmotionVerifyCallback, and is the same as
the current_insert member if the callback resource is XmNlosingFocusCallback.

end_pos specifies the location at which to stop modifying text (however, if no
text was modified, end_pos has the same value as start_pos). end_pos is unused
if the callback resource is XmNmotionVerifyCallback, and is the same as the
current_insert member if the callback resource is XmNlosingFocusCallback.

Appendix B: Data Types

1302 Motif Reference Manual

XmTextVerifyCallbackStructWcs
The callback structure passed to the XmNmodifyVerifyCallbackWcs of Text and
TextField widgets. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
Boolean doit; /* do the action (True) or undo it (False)*/
long currInsert; /* the insert cursor’s current position */
long newInsert; /* desired new position of insert cursor */
long startPos; /* start of text to change */
long endPos; /* end of text to change */
XmTextBlockWcs text; /* describes the text to insert */

} XmTextVerifyCallbackStructWcs, *XmTextVerifyPtrWcs;

All of the fields in this structure are the same as the fields in the XmTextVerify-
CallbackStruct except text, which points to a XmTextBlockRecWcs structure.

XmToggleButtonCallbackStruct
The callback structure passed to ToggleButton callback routines. It is defined as
follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason that callback was called */
XEvent *event; /* event that triggered callback */
int set; /* selection state of the toggle */

} XmToggleButtonCallbackStruct;

XmToggleButtonState
An enumerated type that specifies the state of a ToggleButton. The valid values
for the type are:

XmUNSET XmSET XmINDETERMINATE

Appendix B: Data Types

Motif Reference Manual 1303

XmTopLevelEnterCallbackStruct
The callback structure passed to the XmNtopLevelEnterCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being entered */
Position x; /* x-coordinate of pointer */
Position y; /* y-coordinate of pointer */
unsigned char dragProtocolStyle; /* drag protocol of initiator */
Atom iccHandle; /* internal: not documented */

} XmTopLevelEnterCallbackStruct, *XmTopLevelEnterCallback;

XmTopLevelLeaveCallbackStruct
The callback structure passed to the XmNtopLevelLeaveCallback of a DragCon-
text object. It is defined as follows in <Xm/DragC.h>:

typedef struct {
int reason; /* reason callback was called */
XEvent *event; /* event that triggered callback */
Time timestamp; /* timestamp of logical event */
Screen screen; /* screen of top-level window */
Window window; /* window being left */

} XmTopLevelLeaveCallbackStruct, *XmTopLevelLeaveCallback;

Appendix B: Data Types

1304 Motif Reference Manual

XmTransferStatus
An enumerated type that specifies the status of a data transfer operation. The
value is passed as a parameter to XmTransferDone() in order to terminate cur-
rent data transfer. The valid values for the type are:

XmTRANSFER_DONE_SUCCEED
XmTRANSFER_DONE_CONTINUE
XmTRANSFER_DONE_FAIL
XmTRANSFER_DONE_DEFAULT

XmTraversalDirection
An enumerated type that specifies direction of traversal in a XmTraverseOb-
scuredCallbackStruct. It is defined as follows in <Xm/Xm.h>:

typedef enum {
XmTRAVERSE_CURRENT,
XmTRAVERSE_NEXT,
XmTRAVERSE_PREV,
XmTRAVERSE_HOME,
XmTRAVERSE_NEXT_TAB_GROUP,
XmTRAVERSE_PREV_TAB_GROUP,
XmTRAVERSE_UP,
XmTRAVERSE_DOWN,
XmTRAVERSE_LEFT,
XmTRAVERSE_RIGHT
XmTRAVERSE_GLOBALLY_FORWARD /* 2.0 */,
XmTRAVERSE_GLOBALLY_BACKWARD /* 2.0 */

} XmTraversalDirection;

XmTraverseObscureCallbackStruct
The callback structure passed to the XmNtraverseObscuredCallback of a
ScrolledWindow widget. It is defined as follows in <Xm/Xm.h>:

typedef struct {
int reason; /* reason the callback was called */
XEvent *event; /* event that triggered callback */
Widget traversal_destination;

 /* widget or gadget to traverse to */
XmTraversalDirection direction; /* direction of traversal */

} XmTraverseObscuredCallbackStruct;

Appendix B: Data Types

Motif Reference Manual 1305

XmVisibility
An enumerated type that specifies the visibility state of a widget. A value of type
XmVisibility is returned by XmGetVisibility(). It is defined as follows in
<Xm/Xm.h>:

typedef enum {
XmVISIBILITY_UNOBSCURED, /* completely visible */
XmVISIBILITY_PARTIALLY_OBSCURED, /* partially visible */
XmVISIBILITY_FULLY_OBSCURED /* not visible */

} XmVisibility;

XrmValue
A structure defined in <X11/Xresource.h>, used in XtConvert() and other
resource conversion routines:

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

XrmValuePtr
See XrmValue.

XtAccelerators
A pointer to an opaque internal type, a compiled accelerator table. A pointer to an
XtAccelerators structure is returned by a call to XtParseAcceleratorTa-
ble(). Usually, the compiled accelerator table is produced automatically by
resource conversion of a string accelerator table stored in a resource file.

XtCallbackList
A structure defined as follows in <X11/Intrinsic.h>:

typedef struct _XtCallbackRec {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

Applications which use XtAddCallback() or XtRemoveCallback() do not
need to use the XtCallbackList type. It can, however, be used to set a callback
resource by passing the structure to XtCreateWidget() or XtSetValues().
Any structure so defined should be declared static. In most documentation, the
closure member is referred to as client_data.

Appendix B: Data Types

1306 Motif Reference Manual

XtCallbackProc
The prototype for callback functions. It is defined as follows in <X11/Intrin-
sic.h>:

typedef void (*XtCallbackProc) (Widget widget, XtPointer client_data,
XtPointer call_data)

XtConvertSelectionIncrProc
The prototype for an incremental selection conversion procedure. The XmN-
convertProc for a DragContext object is of this type, which is defined as follows
in <X11/Intrinsic.h>:

typedef Boolean (*XtConvertSelectionIncrProc)(

Widget widget,
Atom *selection,
Atom *target,
Atom *type_return,
XtPointer *value_return,
unsigned long *length_return,
int *format_return,
unsigned long *max_length,
XtPointer client_data,
XtRequestId *request_id)

XtCreatePopupChildProc
The prototype for a procedure that pops up the child of a shell when the shell is
popped up. The XmNcreatePopupChildProc resource of Shell specifies a proce-
dure of this type, which is defined as follows in <X11/Intrinsic.h>:

typedef void (*XtCreatePopupChildProc) (Widget shell)

XtKeyProc
The prototype for a keycode-to-keysym translation procedure. XmTrans-
lateKey() is the default XtKeyProc for Motif applications. The prototype is
defined as follows in <X11/Intrinsic.h>:

typedef void (*XtKeyProc)(Display *display,
KeyCode keycode,
Modifiers modifiers,
Modifiers *modifiers_return,
KeySym *keysym_return)

Appendix B: Data Types

Motif Reference Manual 1307

XtOrderProc
The prototype for a procedure that allows composite widgets to order their chil-
dren. The XmNinsertPosition resource of Composite specifies a procedure of this
type, which is defined as follows in <X11/Composite.h>:

typedef Cardinal (*XtOrderProc) (Widget child)

XtPointer
A datum large enough to contain the largest of a char*, int*, function pointer,
structure pointer, or long value. A pointer to any type or function, or a long, may
be converted to an XtPointer and back again and the result will compare equally
to the original value. In ANSI-C environments, it is expected that XtPointer will
be defined as void *.

XtSelectionCallbackProc
The prototype for a selection callback procedure. The XmNtransferProc for a
DropTransfer object is of this type, and is defined as follows in <X11/Intrin-
sic.h>:

typedef void (*XtSelectionCallbackProc)(Widget widget,
XtPointer client_data,
Atom *selection,
Atom *type,
XtPointer value,
unsigned long *length,
int *format0

XtTranslations
A pointer to an opaque internal type, a compiled translation table. A pointer to an
XtTranslations structure is returned by a call to XtParseTranslationTa-
ble(). Usually, the compiled translation table is produced automatically by
resource conversion of a string translation table stored in a resource file.

Appendix B: Data Types

1308 Motif Reference Manual

