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Abstract

Qddb is a very popular database suite designed for applications in which

the data is logically a set of records, each of which refers to an entire

structured entity. Each record represents values from relational tables that

are joined when data are entered.

This paper presents schema and tuple trees, the underlying structure of

a Qddb database. Instead of a set of full relational rows representing the

join of several tables, the tuple tree represents the tables in a compressed

form. Related data are stored and displayed together, which allows the

application designer to build an application in a relatively small amount

of time.

The presentation of data in Qddb is unusual but intuitive; the user

usually views a subset of a full relational row at any given time. This

presentation is largely the cause of Qddb's popularity.
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1 Introduction

Conventional relational databases can be cumbersome to use and program. The relationship

between tables is well-de�ned but di�cult to translate into a usable application. The user

is often frustrated because the designer has de�ned a �xed number of �elds (for example,

client addresses) in the application, and this de�nition does not accommodate exceptional

cases in which more information (for example, more addresses) is available than can be

represented. The designer may have made such a restrictive decision because allowing an

arbitrary number of values in a �eld generally requires that the �eld be linked to a separate

table built for just that purpose. This extra table has a �nancial cost; complexity translates

into extra programmer hours.

If the designer has provided a separate table, the user is often required to invent unique

identi�ers as data that links the tables. The application program must verify that the

identi�ers are unique and that they are consistent from table to table. Again, the result is

extra complexity that places a burden on both the designer, the database programmer, and

even the end user.

This paper shows how Qddb [HF91] alleviates most of the tedious work involved in designing

relational tables that have �elds that may have an arbitrary number of instances. The Qddb

technique has other surprising and helpful characteristics.

We begin with a small example to show how schema trees eliminate much of the tedious

work associated with designing databases with multiple linked tables. Next, we discuss

schema trees and their relationship to tuple trees. Finally, we concentrate on tuple trees

and their characteristics, including intuitive presentation forms.

2 A motivating example

A Qddb schema (which de�nes the tuple layout) is in the form of a tree that we will refer to

as the schema tree. Each individual tuple in the relation is represented in a corresponding

tuple tree. Each branch of the schema tree may be associated with multiple copies in any

given tuple tree. Each duplicate is called an instance. The leaves of the tuple tree hold the

actual data.

To demonstrate these concepts, consider the following three conventional relational tables:

Client

Client Id Name Address Home Phone Work Phone

1 George Goodman 123 Hardy Road 277-1234 278-5432

2 Joan Goodman 323 Hardy Road 277-1234 278-5432

3 Henry Zellerman 378 Jacklynne Road 262-6432 268-9678
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Invoice

Client Id Invoice Id Item Id Price

2 1 1232 $1.20

2 1 1233 $2.40

2 1 1121 $7.30

3 2 3214 $100.00

Invoice Total

Invoice Id Invoice Total

1 $10.90

2 $100.00

These tables are conventionally described by three schemas, one for each table. A particular

client may participate in multiple invoices; they are linked by the Client Id �elds. If a client

may have an arbitrary number of addresses or phone numbers, we must similarly build new

address or phone number tables and link them by the Client Id �eld.

Any presentation of data across tables must be constructed by an appropriate join operation.

For example, if we want to present a particular invoice, we must (1) �nd the desired invoice

in the Invoice table, (2) �nd the corresponding client in the Client table, and (3) �nd the

invoice total in the Invoice Total table. Finally, we must present this data in a usable

form. These accesses represent a considerable amount of complex work for the application

programmer. Complex work is both expensive and prone to errors, so we would like to

eliminate as much of the complexity as possible.

The three tables shown above can be described using a single schema tree. Because trees

can be represented in a list form, and programmers are generally quite familiar with lists,

we choose to represent our schema trees as lists. (End users do not need to see this represen-

tation.) A schema is a set of attributes, where each attribute may contain other attributes.

Here is the appropriate schema:

Client ( Id Name Address HomePhone WorkPhone )

Invoice ( Id Item ( Id Price )* Total )*

This list has two elements, Client and Invoice. Each is an attribute of the schema. Client

is a structured attribute: It has �ve subattributes, Client.Id, Client.Name, and so forth.

These have no subattributes of their own, so they are leaf attributes and represent slots for

data.

The asterisk `*' denotes that an attribute or subattribute is expandable; in other words, it

may have any number of instances. These expandable attributes represent a joined table.

Expandable attributes may be structured; their subattributes may themselves be structured

and/or expandable. In our example, Invoice is a structured, expandable attribute, and

its subattribute Invoice.Item is also both structured and expandable. A tuple that obeys

this schema may have many instances of Invoice, each of which may have many instances

of Invoice.Item.

In relational terms, the Qddb database contains the data from the several joined tables

shown earlier. Each Qddb tuple corresponds to exactly one entry in the Clients table. That

client may be associated with an arbitrary number of entries in the Invoices table. Each

invoice contains an arbitrary number of items (each with its price) and a total.

To access an invoice with a particular identi�er, we only need to �nd the unique tuple
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Figure 1: A sample tuple tree

that has an instance of Invoice.Id with the appropriate value. The associated instance

of that tuple's Invoice attribute has all the information we seek. If we never plan to

search invoices, clients, or items by their identi�ers, all Id �elds are extraneous and may be

removed.

Figure 1 shows a tuple tree for the schema tree presented above. Every branch of the tuple

tree is a copy of a branch in the schema tree with instance nodes inserted between each

level. If an attribute is expandable, there can be multiple instance nodes (1:::n), each of

which heads its own subtree. Leaf attributes also have instance nodes (not shown) that

point to data.

The schema tree presented above is nearly as inexible as original relational tables, although

it is perhaps clearer. Suppose we want to associate each client with an unlimited number

of addresses and phones. Further, suppose we want to associate some phone numbers with

particular addresses and other phone numbers with no address at all (perhaps for mobile

phones). The schema tree can be upgraded to cover these needs:

Client (

Id

Name

Residence ( Address Phone* )*

Phone ( Description Number )*

)

Invoice ( Id Item ( Id Price )* Total )*

To represent this schema in a tabular form would require six tables, the original three tables

plus two di�erent ones for phones and one for residences. Two new kinds of unique identi�ers

would be needed, one for residences and one for no-address phones. These identi�ers would

link the tables.
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As the number of expandable �elds increases, so does the number of tables required to

represent them. For that reason, database designers tend to shy away from such data. The

schema tree, however, allows us to specify the relational tables in an easily conceivable

form. The application programmer doesn't have to worry about building multiple tables

and setting up appropriate links between the tables, so expandable attributes are welcomed

if they are appropriate.

3 Schema trees

A schema tree describes the structure of tuples in the database. It indicates which attributes

are structured and/or expandable. It also contains type information for leaf attributes. In

relational database terms, a single schema tree might represent many tables.

Not only do schema trees let us specify relationships between relational tables, but they

also have other nice properties.

1. Each node in the schema tree has a unique path name.

2. A subtree of the schema tree headed by any node contains all the attributes logically

associated with that node.

3. By traversing the subtree headed at any node, we can build all the tables logically

associated with that node.

4. By traversing the associated subtree of the tuple tree and collecting values at leaf

nodes, we can build the join of all the associated tables.

5. We can traverse the tree to build an intuitive user interface showing the relationship

among the attributes.

If we are interested in a section of the tree, we need only look at those attributes in the

appropriate subtree. For example, suppose we want to add a new residence to a client's

record. To perform this task in a database using relational tables would require: (1) �nd

the client in the Client table, discover the client's unique identi�er, (2) add a new row to the

Residence table with the client's unique identi�er and a new unique Residence identi�er,

and (3) add one or more phone numbers to the Phones table, each with the appropriate

Residence identi�er. With schema trees, however, we only need to �nd the client and add

a new section of the tuple tree corresponding to the Residence attribute. Multiple phone

numbers can be added to the new instance by creating a new section of the tuple tree

corresponding to the Residence.Phones attribute under the same instance of Residence.

We have demonstrated that a recursively-structured schema tree can describe a set of rela-

tional tables where rows in a subordinate table are related to a single entity. In database

terminology, these are one-many relations. Tables that are related in more complex ways,

such as many-many relationships, can still be described by a set of schema trees.
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3.1 Schema trees as full database descriptors

We have seen how schema trees can be used to describe the relationship between tables and

to create new entries in the tables that are logically related. We now describe how Qddb

uses the schema tree to fully describe a database by establishing types, verbose �eld names,

search options, word descriptions and value formatting.

Qddb associates a type with each leaf attribute, either a numeric type (real, integer, or date),

or string. Numeric values may be associated with a format for display (not input) purposes.

The string type consists of words interspersed with separators. Usually, separators are all

non-alphanumeric characters, but the schema may specify other separators. Strings are of

arbitrary length.

Each attribute in the schema may be associated with a verbose (many-word) name for

display purposes. By default, database searches may consider values in all leaf attributes

(in relational database parlance, all attributes are indexed), but the designer can exclude

individual attributes from the indices to reduce their space requirements.

The schema itself is maintained in a free-format Ascii �le that can be created by any text

editor. Each attribute or subattribute in the schema is of the form:

AttributeName ?<options>? ?(<subattributes>)? ?*?

where we use the ?? notation to indicate optional syntax. The <options> may be any of:

Option Purpose

verbosename \string" Verbose name of attribute

type string Attribute has type string [default]

type date Attribute has type date

type integer Attribute has type integer

type real Attribute has type real

alias AttributeName A unique alias for the attribute

separators \string" Words are separated by one

of the characters in \string"

format \string" Format the attribute based on \string"

exclude Exclude the attribute from indexing

To represent a simple database of potential employees, we might keep their name, addresses,

phone numbers, rank, and date of application. A schema for this relation could be:

Name ( First Middle Last )

Address (

Street exclude type string

City

State

Zip verbosename "Zip Code"

)*

Phones ( Desc verbosename "Description" Number )*
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Rank

type integer

format "%2d"

verbosename "Prospect ranking"

Date type date format "%D %T"

verbosename "Date Applied"

Real and integer formats are speci�ed in the standard format for printf() in the ANSI C

standard, and dates are speci�ed in the standard form accepted by the POSIX function

strftime(). All formats pertain to output conventions; input conventions are those accepted

by atoi() (integers), atof() (reals), and a wide variety of forms (dates).

3.2 Enumerating attributes within a schema tree

It is important to be able to uniquely distinguish attributes in a schema tree. For this

reason, a schema must uniquely name attributes at a particular level in the tree. Attributes

across levels may have identical names. For example, consider this schema:

A ( B C )* B C

The leaf attributes are A.B, A.C, B, and C. When we refer to B, we are referring to the leaf

attribute B, not A.B.

A depth-�rst traversal of the schema tree can generate the set of leaf attributes. If we

wish to elide certain uninteresting parts of the complete row, we may ignore the columns

comprising those parts.

4 Tuple Trees

A tuple tree contains all data for a particular tuple in the database. It represents data from

all the joined relational tables described by the associated schema tree. Structurally, it is

an exact duplicate of the schema tree with a level of instance nodes placed after each level

of attribute nodes (including the leaves).

The tuple tree allows programs to manipulate entire sets of related rows with simple oper-

ations. We can view, add, delete, or modify branches. We can produce rows relating to a

branch by traversing only the part of the tree that is of interest.

For example, an application might create a new branch of a tuple tree. Each attribute is

initialized to have a single instance. The application might then build a new instance for

an expandable subtree. Then it might assign values to leaf attributes.
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Figure 2: Enumerating the leaves of a tuple tree

4.1 Identifying leaves

We must be able to uniquely identify individual leaves in the tuple tree. Without this

ability, we cannot construct the tree from the values nor can we tell which attribute values

are related.

A tuple tree has the following convenient properties: (1) each attribute node has a unique

local name (that distinguishes it from its siblings), and (2) each instance node has a unique

local number (that distinguishes it from its siblings). In Figures 1 and 2, attribute-node

siblings are shown surrounded by a gray box. We number all the attribute-node siblings

(within a single gray box) 1, 2, 3, and so forth. Then we assign each leaf a label formed by

the concatenation of the local numbers on the path from the root to that leaf, using a dot

as a separator, as shown in Figure 2. The superscripts in the �gure refer to the attribute

number. Therefore, the �rst instance of Invoice.Item.Id is labelled \2.7.2.1.1.1". We call

these leaf labels leaf identi�ers. Pre�xes are called path labels. Integers at odd positions in

a path label (that is, 2, 2, 1) are due to attribute numbers; integers at even positions (7, 1,

1) are due to instance numbers.
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4.2 Expandable attributes and their relation to tables

We can think of each expandable Qddb attribute A as a separate relational table. The

ordinary columns of the table are the subattributes of A. (If A is not structured, the table

has one ordinary column.) In addition, there is a link column with a unique identi�er for

joining with other tables. For example, an attribute A whose schema is A ( B C D )* is a

table with columns B, C, and D. A single tuple gives rise to several rows in that table, one

for each instance of attribute A.

Since both structured and non-structured attributes can be expandable, we can easily de-

scribe very complicated relationships between the tables. For example, we might have the

following schema:

Location (

Name*

Address ( Street City State Zip Contact* )*

Phone ( Desc AreaCode Number )*

)

This Qddb example is equivalent to a relational Location table containing columns Name,

Address, and Phone. The Address column contains unique identi�ers linking it to a separate

Address table, which contains, besides the link column, columns Street, City, State, Zip, and

Contact. The Contact column contains unique identi�ers linking it to a separate Contact

table, which contains, besides the link column, a single data column. Similarly, the Name

and Phone columns of the Location table are links to other tables. In all, there are �ve

tables, interlinked with a web of unique identi�ers.

4.3 Generating all rows

The tuple tree lets us construct all relational rows pertaining to the tuple without expensive

join operations on large tables. The following algorithm produces all rows from a given node

in a tuple tree:

procedure ProduceAttributes (AttributeNode) : set of rows

answer := NULL

for each Inst := instance of AttributeNode do

answer := union(answer, ProduceInstances(Inst))

return answer

procedure ProduceInstances (InstanceNode) : set of rows

if leaf(InstanceNode) then

return InstanceNode.Value

else

answer := NULL

for each Attr := attribute of InstanceNode do

answer := cartesian product(answer, ProduceAttributes(Attr))

return answer
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Figure 3: Traversing a tuple tree

The union operator returns a table that combines all the rows of its two operands, which

agree on number and type of columns. The cartesian product operator returns a table

that combines all the columns of its two operands, with as many rows as the product of the

rows of the two operands.

We can build all the rows of the entire tuple tree for a given tuple:

ProduceInstances(RootNode)

We call these the complete rows.

We can also build partial rows pertaining to subtrees. For example, we could �nd all

information about the 7th invoice for a particular tuple as follows:

ProduceInstances(2.7)

The result is a table with columns for Invoice.Id, Invoice.Item.Id, Invoice.Item.Price,

and Invoice.Total. The values for the Invoice.Id and Invoice.Total columns are the

same for all rows. We can narrow our focus and consider only items in the 7th invoice:

ProduceAttributes(2.7.2)

The result is a table with columns Invoice.Item.Id and Invoice.Item.Price.

Figure 3 depicts a tuple tree for the schema A ( B C* D )*. An invocation of

ProduceAttributes(RootNode)

on this tuple tree returns the following table of complete rows:
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A.B A.C A.D

once upon dreary

once midnight dreary

while pondered weak

over many curious

over quaint curious

Now suppose we aren't interested in the A.C attribute. Excluding the undesired attributes

from the traversal builds the following table, which accurately restricts the previous one:

A.B A.D

once dreary

while weak

over curious

4.4 Compressed storage

Many database applications manipulate sparse data; that is, many �elds are empty in any

given tuple. One advantage of the tuple tree is that we can reconstruct the entire tuple

tree from only those leaves containing data. Qddb's external representation only stores

attributes with non-empty data. For example, consider the following modi�cation of the

tuple tree in Figure 3 to include fewer populated leaves:

1.1.2.1 upon

1.1.2.2 midnight

1.2.1.1 while

1.3.2.1 many

1.3.2.2 quaint

1.3.3.1 curious

From these leaves, we know there are three instances of attribute A, the �rst and third of

which contain two instances of A.C. When Qddb reads in these leaves, it can build an entire

internal tuple tree. The algorithm for building tuple trees from a given set of leaf values

(each with a leaf identi�er) is as follows:

1. Construct a tuple tree containing one instance for every attribute in the schema. All

leaves start with empty values.

2. For each given leaf value, follow its path label, diving down the tuple tree according

to the label's components.

(a) If we we reach an instance that doesn't exist, create the instance and its entire

subtree, giving all leaves empty values.

(b) When we reach a leaf, set its value to the given value.
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The implementation of this algorithm is most e�cient when the leaves are presented in

lexicographic order by leaf identi�er. The external representation of Qddb data always

maintains order because it is generated from a left-to-right depth-�rst traversal of an internal

tuple tree.

4.5 Locking

Locking rows in a traditional relational database can be a non-trivial task. First, you must

know which rows to lock. Next, you must locate and lock those rows. A set of related rows

may be spread across many tables, requiring many locks. Locating the rows to lock may

require queries on many tables.

A tuple tree is stored externally as a contiguous list of leaves. The entire contiguous

region of the database �le can be locked to achieve a lock on a given tuple. Qddb does

not lock at a �ner grain (such as a subtree of the tuple tree), although subtrees are also

stored contiguously, and Qddb therefore could easily accomplish �ner-grained locking. It is

straightforward to lock multiple tuple trees if the need arises.

5 Indexing and searching

Locators are pointers into data. They contain two components: a tuple identi�er and a leaf

identi�er. Each tuple in a relation can be located with its tuple identi�er. Each leaf within

a given tuple is uniquely identi�ed by its leaf identi�er.

Qddb associates a list of locators with every key, that is, every searchable component of a

leaf value. We call this association the index into a Qddb relation. The index can be accessed

in three ways. The most direct way is by hashing the given key to �nd the associated locator

list. Word-range and numeric-range searches are performed by binary search in a sorted key

or number �le, leading to a contiguous set of entries, each of which points to a locator list

in the index. Regular-expression searches use �nite-automaton search through the sorted

key �le, leading to a set of matching entries, each of which points to a locator list in the

index.

In all cases, a search results in a list of locators. If only the list of tuples is needed, this

list can be pruned by discarding duplicate locators that have the same tuple identi�er. If

the search is to be constrained to particular attributes, the list of locators is pruned by

discarding all locators with irrelevant leaf identi�ers.

Complex searches are constructed by applying simple searches and combining the results.

We will demonstrate several examples based on this schema tree:

Name (First Last) Address (Street City)*

A sample complex query might be: Find all tuples with the value \Joe" in the Name.First

�eld and \Harrison" in the Name.Last �eld. In other words, we want to �nd tuples that
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satisfy the following expression:

(Name.First = "Joe") and (Name.Last = "Harrison")

This query requires three steps. (1) Search for all tuples with Name.First containing "Joe",

(2) Search for all tuples with Name.Last containing "Harrison", and (3) construct a weak

intersection of the matching locators. A weak intersection ignores the leaf identi�ers of the

locators and uses only the tuple identi�ers for comparisons. Only tuples that match both

searches remain after the intersection.

Strong operations on locator lists do not ignore the leaf identi�ers. Strong operations use

both the tuple identi�er and the leaf identi�er for comparison purposes. Two locators are

equivalent if both the tuple identi�ers and leaf identi�ers are identical. For example, a

strong intersection of sets A and B produces all locators that reside in both sets; a weak

intersection produces all locators with tuple identi�er t if at least one locator with tuple

identi�er t resides in both A and B. Strong operations generally operate on lists that contain

locators associated with a particular attribute.

We can also do binary union and exclusion operations on locator lists. Binary union merges

two sets of locators. Binary exclusion of two sets A and B produces all locators that are

contained in set A but not in set B. Binary exclusion has both weak and strong forms.

Binary union does not have a weak or strong form because no comparisons are used in the

operation.

Suppose, for example, we want to �nd all occurrences of \Joe" in the Name.First �eld

where the Name.Last �eld is not \Harrison". In other words, we want

(Name.First = "Joe") and ((Name.Last = ".*") minus (Name.Last = "Harrison"))

The syntax \.*" means \any value." The search �rst builds the locator lists (A, B, and C)

for the three subexpressions from left to right; it then performs a strong exclusion (B �C)

and a weak intersection (A \ (B � C)) to produce the result.

5.1 Finding tuples with matching rows

In our previous example, the attributes of interest were not expandable. Expandable at-

tributes provide an interesting dilemma: how do we know if two matching locators belonging

to the same tuple are in the same row? To illustrate this problem, consider the query:

(Address.Street = "Rainbow") and (Address.City = "Lexington")

A tuple may have the following values for the Address attribute:

Address.Street Address.City

Rainbow Pittsburgh

Nichols Lexington

Such a tuple will be produced by the weak intersection of the two expressions, but is not a

proper result, because the two expressions fail to match on the same row.
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For two leaves to be in the same row, they must be in the same instance of their deepest

common attribute ancestor. In our case, they must be in the same instance of Address.

(In the previous cases, they must be in the same instance of Name, but this attribute is not

expandable, so all results were in the same row.)

We can determine whether two leaves are in the same row by (1) comparing the leaf identi-

�ers of the two leaves from left to right, and (2) noticing the �rst position that the attribute

numbers (odd positions) or instance numbers (even positions) di�er. If the �rst di�erence

is an attribute number, then the two leaves are in the same row. If the �rst di�erence is an

instance number, then the two leaves are not in the same row.

Suppose we perform a query Q that returns a set of locators L describing the results of

our query. We want to �nd all rows that match our query Q. The following algorithm

accomplishes this task:

1. Let T be the set of all tuple trees in the relation.

2. Let A represent all attributes in the schema tree that were used in our query Q.

3. Partition the set L into a set S of subsets. Each subset s 2 S contains all locators

l 2 L describing a single tuple t 2 T ; that is, there is a one-to-one correspondence

from each element s 2 S to an element t 2 T .

4. For each s 2 S,

(a) For each attribute a 2 A, place all locators l 2 s describing attribute a (regardless

of instance) into a set s

a

. A set s

a

= ; if and only if there is no locator l 2 s

describing a match on attribute a.

(b) If for any attribute a 2 A, s

a

= ;, then the tuple tree t described by s does not

contain a row that satis�es Q. Let S = S� s, then continue with the next s 2 S.

(c) Otherwise, perform the cartesian product R =

N

a2A

s

a

.

(d) For each r 2 R, check to see if all locators in the components of r are in the

same row. If no r 2 R satis�es this condition, then the tuple tree t described by

s does not contain a row matching query Q; let S = S� s and continue with the

next s 2 S. Otherwise, do not modify S and continue with the next s 2 S.

At the completion of this algorithm, each remaining s 2 S describes all rows in a single

tuple t 2 T that satisfy Q. For each s 2 S, we can �nd the all tuples that satisfy Q by

the tuple identi�er contained in any locator l 2 s. We now have a set of tuple identi�ers

completely describing the locations of the tuple trees satisfying query Q.

This algorithm �nds all tuples with at least one matching partial row (partial in that it

considers only the attributes in the query) without reading the actual tuple tree data. Each

matching row may represent several complete rows; this expansion can be determined only

by reading the data. For most purposes, this is a very e�cient mechanism for determining

which tuples match a particular query; we generally only need to read the tuples that

contain at least one matching row.
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Figure 4: Generating rows in a tuple tree matching a query.

5.2 Generating matching rows

After applying the algorithm presented in Section 5.1, we have a set S that contains a subset

of locators s 2 S for each tuple t 2 T satisfying our query Q. Each subset s describes all the

locators for each attribute in a particular tuple matching our query. We know each tuple is

guaranteed to contain at least one row satisfying our query. We must now read the tuple's

leaves from the disk to build the tuple tree and produce all matching rows. Once we have

the tuple in the form of a tuple tree, we mark all leaves matching our query as good. We

mark bad all leaves of searched attributes that are not marked good, because we know that

these leaves did not match our query. A traversal of the tuple tree will produce all rows

matching the query if we exclude any row containing a leaf that is marked bad.

For example, suppose we have the tuple tree shown in Figure 4 and we search on the at-

tributes A.B and A.C. Suppose we know this tuple matches because the algorithm presented

in Section 5.1 produces a subset s 2 S corresponding to this tuple. Suppose our set s

describes the leaves (1:1:1:1 1:1:2:2 1:2:2:1), so we mark those leaves as good. (Figure 4

shows them with a superscript `G'.) The searched attributes are A.B and A.C, so we mark

all instances of A.B and A.C that are not marked good as bad (shown with a superscript

`B'.)

To produce all rows matching the query for this tuple, we use the following modi�cation of

the algorithm presented in Section 4.3:

procedure ProduceAttributes (AttributeNode) : set of rows

answer := NULL

for each Inst := instance of AttributeNode do

answer := union(answer, ProduceInstances(Inst))

return answer
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procedure ProduceInstances (InstanceNode) : set of rows

if leaf(InstanceNode) then

if bad(InstanceNode) then

return NULL

else

return InstanceNode.Value

else

answer := NULL

for each Attr := attribute of InstanceNode do

answer := cartesian product(answer, ProduceAttributes(Attr))

return answer

Using the above algorithm on the tuple shown in Figure 4, we get the following single row:

1.1.1.1 1.1.2.2 1.1.3.1

The other rows were eliminated because one or more of their leaves were marked bad.

This algorithm will not generate false matches because each leaf that represents a searched

attribute is marked bad unless a locator is found for that particular leaf.

6 Presentation

Tuple trees lend themselves to various representations for di�erent purposes. The external

form used by Qddb in its database �les prefaces each value with its leaf identi�er, omitting

those attributes that have empty values.

The readable form is a textual representation of the tuple tree with attributes given their

local (textual) names and with structured attributes surrounded by parentheses.

For example, consider the following schema tree: A ( B* C )* D. A simple readable form

of a tuple tree might be:

A (

B = "10"

C = "20"

)

D = "30"

A is a structured attribute containing subattributes B and C. Since the attributes A and A.B

are expandable, tuples can be more complex:

A (

B = "10"

B = "80"

C = "20"

)

A (

B = "40"

)
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Figure 5: The graphical form of a tuple tree

D = "30"

Multiple instances of expandable attributes are always adjacent in the readable form. At-

tributes with empty values are omitted. Qddb uses the readable form for a text-editor

interface to data.

For the convenience of Tcl programmers, Qddb supports the tcl form of tuple trees. In this

form, a tuple tree is a list of (attribute, value) pairs, where the attribute is a leaf identi�er

and the value is a string.

The newest presentation form of a tuple tree is the graphical form. The graphical form is

displayed in a window (in the X Window System [SG86]). Given the following schema tree,

Qddb tools automatically build the graphical form of the tuple shown in Figure 5.

Name ( First Last )

Address ( Street City State Zip Phones (Desc Number)* )*

Phones ( Desc Number )*

The graphical form looks very similar to the schema tree

1

. At any given time, the graphical

form displays one complete row in a single tuple.

Rows of an expandable attribute associated with the current complete row are accessible

by interactively selecting a \View" button. This button invokes the ProduceAttributes

algorithm introduced in Section 4.3. For example, suppose we are in the 2nd instance of

Address and wish to view Address.Phones. The viewed rows are produced by evaluating:

r = ProduceAttributes(Address.2.Phones)

1

Qddb comes with interactive tools that allow users to modify the appearance of this graphical form and

programming tools that allow programmers to make more substantial modi�cations.
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If we choose to view the Address attribute, the viewed rows are produced with:

r = ProduceAttributes(Address)

In other words, choosing the Address attribute's \View" button shows all possible rows

beginning at the Address node in the tuple tree. Choosing the Address.Phones \View"

button shows all rows beginning at the Address.Phones node in the current instance of

Address in the tuple tree. All views are con�gurable, that is, the user can choose to view

only certain columns, sort by given columns, and order the columns.

The user can add a new instance of an expandable attribute by selecting the \Add" but-

ton. This button adds an entire branch (with initially empty contents) to the tuple tree.

Similarly, the user can delete an entire branch of the tuple tree by selecting the \Del"

button.

The graphical form provides a clean interface for attributed searching. The user may specify

one or more keys for all attributes. If multiple keys are speci�ed for a particular attribute,

each constitutes a search. The results of the searches within a particular attribute are

combined by strong operations. The results of searches across attributes are then combined

using weak intersection, and the result is pruned by the algorithm presented in Section 5.2.

The matching tuples are then read, and the rows that satisfy the query are constructed and

displayed.

7 Related Work

Schema and tuple trees are related to nested relations and object-oriented databases. Nested

relations [Mak77, JS82] are relations that have non-atomic attributes, that is, they are

not in the First Normal Form (1NF ). Nested relations are also called NF

2

(Non First

Normal Form) relations. It has been realized for some time that NF

2

relations can be

decomposed into 1NF relations [KS91]. Other researchers have used the term scheme tree

in a way di�erent from ours. For example, they can represent nested relations, where the

nodes are pairwise-disjoint sets of non-nested attributes and the edges represent multivalued

dependencies [OY87]. Some implementations of nested relations include AIM-P [PD89],

VERSO [SAB

+

89], ANDA [DG89], and DASDBS [SS89]. These implementations appear

to use linked tables as the underlying data structure, although DASDBS seems to perform

some optimization by storing related rows within a table close together.

Object-oriented databases [Kro93, KS91] mix object-oriented programming practices with

databases. Typically, objects are schemas written in a fashion similar to a C++ class contain-

ing members such as constructors, methods, and variables. Objects may be derived from

other objects through inheritance. Since object-oriented databases allow arbitrary recursive

structures, it can be quite di�cult to map them into the relational model. Object-oriented

programming techniques can be used without inheritance or extensible data types in a re-

lational database [PBRV90]. Typically, object-oriented databases are used for applications

that do not �t the relational model well, such as CAD (computer aided design). Some im-
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plementations of object-oriented databases include O

2

[LRV88] and Gemstone [MSOP86].

8 History and Current Status

We developed schema and tuple trees in 1989 when we �rst developed Qddb. At that time,

Qddb was implemented in around 10,000 lines of C code and performed very basic searches

and operations. Qddb was released to the public, but the presentation utilities were so crude

that only a few hundred people bothered to learn about it. Qddb development stalled until

1994 because of other projects. In 1994, we began building a generic graphical application

based on the schema tree. With the advent and maturation of Tcl and the Tk toolkit

[Ous94], we have been able to build a signi�cantly improved interface that interacts with

the X Window System [SG86].

Today, Qddb sports a very fancy user interface allowing users to conveniently navigate and

search for rows in tuple trees. As a result, the Qddb user community has grown to thousands

of people world-wide. Qddb is implemented in around 45,000 lines of C and Tcl code. It

runs on any Unix-based computer. Qddb is always publicly available from:

ftp.ms.uky.edu:pub/unix/qddb/qddb-<version>.tar.gz

The distribution contains full documentation and source. Sample databases and applica-

tions are also available.

9 Conclusion

Tuple trees provide a convenient and e�cient structure for storing conventional relational

rows in a pre-joined fashion. Schema trees provide an easy, intuitive way for program-

mers (and even non-technical people) to de�ne a database with fairly complex relationships

among the various attributes. Tuple trees have many nice properties: they are easy to

build, easy to manipulate, e�cient to store and search, and easy to view. Since a tuple

tree's leaves can be stored contiguously, locking a set of related rows (one tuple tree) is

straightforward.

Since schema and tuple trees are easy to understand, we have found that many people

incapable of de�ning simple databases with standard relational tools can now build fairly

complex databases in a matter of minutes.
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