
KitView – A User Interface Tool for MetaKit
Steve Landers

Digital Smarties Pty Ltd

steve@digital-smarties.com

ABSTRACT

KitView is a user interface tool designed as a test bed for ideas in database design, data management, user
interface generation and application deployment.

KitView is layered on MetaKit[1] – a flexible, efficient, portable and embeddable database library with bindings
for Tcl and several other languages. KitView extends MetaKit, but requires no changes to MetaKit.

This paper gives an overview of the design and implementation of KitView, discusses some lessons learned to
date, and considers possible future directions.

1 Introduction

KitView has its origins in a commercial software and
hardware project.

The software component of the project includes a fairly
typical distributed data management application,
involving:

• a small number of centralized databases
• client software installed on a large number of

machines (potentially thousands)
• a relatively low frequency of database updates
• semi-regular code updates

Key requirements were the usual wish list of:
• ease of deployment and upgrade
• good performance over slow networks
• ease of use
• portability across *nix and Windows

Typical solutions to meet these requirements seemed
capable of addressing at most three of the above.
Perhaps the most common solution would have been a
database driven web back-end and a Java front-end.
But however you look at it, this would still leave
significant deployment, portability and performance
issues.

The development organisation’s existing commitment to
MetaKit was re-confirmed after an evaluation of the
available options. This decision was due to MetaKit’s
embedded nature (no need for database servers), Tcl
bindings, small size and excellent performance.

The result was a solution that met all of the design
objectives with a significantly lower development cost
than more traditional implementation technologies.

The data management component - now named KitView
- is being generalized in preparation for release as a
general-purpose user interface tool for MetaKit.

Key features of KitView include:
• a layered data dictionary - implemented using

MetaKit tables1 - that can be incrementally
added to existing MetaKit databases

• a data management user interface that is
generated at run-time from the data dictionary

• centralized storage of application code, data and
meta-data which is downloaded to clients at run-
time

• distributed locking providing table, column or
field locking with support for distributed waits

• data updates are distributed to active clients
using a queued trigger mechanism

• small footprint
• easy client deployment using a single cross-

platform Scripted Document[2]

The organization funding the development has actively
encouraged the generalization and release of the data
management component of the project as Open Source
– in support of the Tcl/Tk community.

This paper gives an overview of the design of KitView
and the implementation technologies used; assesses the
success of the approach and offers some comments on
the issues encountered along the way.

1 Note that this paper uses the more traditional database
 terminology table rather than the MetaKit equivalent view

Front

TclKit

Front

TclKit

Front

TclKit

Front

TclKit

Back

TclKit Database

2 Architecture

KitView comprises four components
• A back-end server
• One or more front-end clients
• The MetaKit database file being managed
• A TclKit[3] interpreter for each supported

platform

Communication between the front-end clients and back-
end server is via a simple text based protocol that
implements remote method invocations.

All communications are compressed at the protocol
level. After initial testing it was found that latency was
more of an issue than throughput, so the protocol was
amended to combine (or “coagulate”) several MetaKit
library calls behind a single server method to minimise
client/server communications.

3 Features

3.1 Data Dictionary

The data dictionary is central to KitView, and contains
the information needed to generate a user interface at
run time, including such meta-data as:

• data description (table, column, format)
• validation, access and transformation rules
• an index of application specific scripts

(that are themselves stored in the
back-end server)

The data dictionary can be incrementally added to any
MetaKit data file. KitView guides the user through
adding the dictionary and, where possible, makes
intelligent suggestions (e.g. it suggests a column width
based on the length of the longest value in the
column).

The KitView data dictionary is layered on a MetaKit
database using MetaKit tables. Several normalized
tables are used to store the dictionary:

• the list of tables within the application
• the columns within tables
• rules to be applied to each column
• the definition of the rules
• an index of scripts/logic/code

Rather than describe specific user interface components
or display characteristics, the contents of these tables
are abstracted and generalised. For example, there are
brief, short and detailed descriptions of each table,
information about master/detail relationships between
tables and hints about how to express plurals (e.g. row
vs rows).

In addition, KitView maintains several tables:
• log of application usage
• a log of data changes
• active clients
• active locks

Figure 1 - KitView Architecture

The front-end client runs the application user interface.
It contains any packages needed by the user interface
(including copies of compiled packages for all
supported platforms) and just enough logic to connect
to the back-end server. Typically, all user interface code
is downloaded from the back-end server to the client at
run-time.

The back-end server performs several tasks on behalf of
the front-end clients:

• data storage and access
• locking
• logging
• code storage

Both the front-end client and back-end server are
deployed as single file Scripted Documents2 . Typically,
each application that uses KitView has a separate set of
these files containing the required Tcl extensions and
application specific code.

KitView stores only static data in the Scripted
Documents - all other data is stored externally in the
MetaKit database and managed via the back-end server.
This allows the client to be made read-only and
facilitates deployment via networked filesystems.

2 Section 4 (Implementation Technology) gives more details about
TclKit and Scripted Documents.

Type Rule Command Message
field expr expr $arg
field length expr {$value == {} || [string length $value] == $arg} $title must be $arg characters long
field maxlength expr [string length $value] <= $arg $title must be $arg or less characters long
field notnull expr {$value != {}} $title cannot be empty
field phone regexp {^$|^\([0-9]{3}\) [0-9]{3}-[0-9]{4}$} $value Not a valid long distance phone number
field regexp regexp {$arg} $value
field string string is $arg $value $title must only contain characters of type
reformat initcap set value [string totitle [string tolower $value]]
reformat phone regsub {^(.+)(….)$} $value {\1-\2} value
reformat strip regsub –all {[$arg]} $value {} value
reformat when set value [clock format [clock seconds]]

Figure 2 –Rule Definitions

Figure 2 shows some generic rule definitions. Note that
rules usually map straight on to Tcl commands,
although they could refer to application specific scripts.

When specifying the rules to be applied to each row or
field, the following information is provided:

• the table to apply the rule to
• the type of rule (entry/field/row/reformat)
• the column to apply the rule to (if not a row

rule)
• the name of the rule to use
• an arbitrary argument to pass to the rule
• an indication of how severe the error is – used to

highlight error messages by the generated user
interface (e.g. red for an error)

• the error message to display if the rule fails (this
will override the default rule message)

Figure 3 shows an example specification of rules to be
applied when entering data to a phone number field.
The rules apply as follows

1. make sure the field isn’t empty
2. strip out space, parentheses and minus

charac ters
3. check that only digits have been entered
4. check the entered data is 10 characters long
5. reformat the data to look like a long-distance

phone number – e.g. “(619) 692 2265”

The entry validation and transformation rules are worth
mentioning in more detail. The rules are one of four
types:

• entry - trigger on each keystroke
• field - trigger when leaving the field
• row - trigger when leaving the row
• reformat - trigger when leaving the field

and replace existing field value

Rules are written in Tcl, and can make use of the wealth
of string and regular expression handling available.

Multiple rules can be defined for each field or row, and
are evaluated until one fails or all succeed. A reformat
rule causes any field rules to be re-evaluated.

Rules are defined by adding rows to a rule definition
table. Each row contains the following information:

• the rule type (entry/field/row/reformat)
• the rule name (used when invoking the rule)
• a Tcl command that implements the rule (returns

1 for success, 0 for failure)
• default message to display if the rule fails

There are a number of variables that may be used within
the Tcl command that implements the rule. The two
main ones are value (the value of the just entered
character, field or row) and arg (an arbitrary value
passed from the rule invocation). In addition, KitView
sets variables to indicate the table and column being
validated, and a variable for each field in the row.

Table Column Type Rule Arg Severity Message
sample phone field notnull error You must supply a phone number
sample phone reformat strip ()-
sample phone field string digit error
sample phone field length 10 error
sample phone reformat phone

Figure 3 –Rule Usage

The data access permissions have been designed but
not yet implemented. These are specified using an
hierarchical role model that allows particular roles to be
assigned to each user or groups of users. Organizational
roles and permissions can be abstracted nicely via this
mechanism - allowing the developer to specify access
to a table, a column or even a row. Like validation
rules, access rules are expressed in Tcl and maintained
using KitView.

3.2 User Interface Generation

KitView separates the internal and visual
representations of a user interface.

The internal representation comprises the meta-data
stored in the data dictionary. The visual representation
is inferred from the contents of the data dictionary and
is generated at run time.

There are four user interface modes:
• database design
• user data management
• logging/status and audit trails
• application specific user interface

Only the first three have been implemented.

The Database Design mode allows the developer to
modify the database structure, add data dictionary
information, validation rules and rule definitions. The
developer uses this mode when building the application
or adding a data dictionary to an existing database.
This is an administration mode that is run stand-alone
(i.e. when no clients are active).

The User Data Management mode is typically invoked
via an application specific window. It can be invoked
multiple times on different tables (e.g. from several
options on a pull-down menu).

Figure 4 shows the User Data Management interface
generated when maintaining the Data Dictionary itself
(not the usual procedure – but it serves as a good
example).

The style of interface is simple but effective. The tables
to be managed are presented using a tabbed notebook,
with one tab per table.

The various items in Figure 4 are:
1. there is a tab for each table being managed

– the tab name is inferred from the brief table
description (Item 7)

2. the long description of the table
3. the table heading uses the short table

description, and is enhanced by the
“Count” field (Item 6) if specified.

4. if the table access is “read” then the table
contents cannot be modified

5. the sorting order of data in the table (or
don’t sort if empty)

6. whether to display a row count in the table
heading (Item 3)

7. a brief description of the table – used in
the tab name (Item 1)

Figure 4 - User Data Management Interface

1
2

3 4 5 6 7

Note also that KitView supports a master/detail
abstraction – i.e. a simple two level hierarchy within a
table – specified by the “Maintype” field in the data
dictionary.

When a user attempts to edit data that is locked by
another user, a wait lock is requested from the back-end
server, a waiting dialog is posted, and the foreground
text color of the tab for the table is changed to indicate
a warning (usually orange). The user can continue
editing other tables by selecting their corresponding
tab. When the data becomes available the waiting
dialog is deleted, the table tab color is changed to blue
(indicating an edit in progress) and the editing can
proceed.

Data is edited in place, by placing an entry widget
above the field being edited.

Any data entry rules are downloaded as required by
front-end clients and cached for subsequent uses. The
rules are evaluated using a safe interpreter.

If a rule fails, then the user is unable to leave the
current entry field being edited.

The logging, status and audit trail interface is a read-
only display of information maintained by the KitView
back-end server. The list of connected clients and active
locks are transient (i.e. non-persistent between server
restarts). The application usage log records client
connections and application events (configurable per
application). The data logs record the changes to the
database, with sufficient detail to allow both roll-
forward and roll-back (although no tool exists to
perform these yet).

3.3 Centralized Storage

As mentioned previously, there is a single KitView back-
end server per database being managed. Data and meta-
data are stored centrally in the database being
managed. Scripts can be stored in the database or, more
typically, in the server Scripted Document for the
application.

Data, meta-data and scripts are retrieved by front-end
clients as needed and cached for duration of the
connection. Data is loaded the first time it is viewed
and kept up to date via distributed updates.

To date there hasn’t been a performance issue relating
to cache size, but it would be possible to implement a
simple “Least Recently Used” algorithm to keep cache
size below a specified threshold.

Clients hold no state between sessions – they are
therefore read-only and may be mounted from a network
file system or shared volume.

3.4 Distributed Locking

Locking is performed via the back-end server, and
provides centralized locking with a granularity down to
individual data items.

The back-end server has an internal lock table and an
array shared with front-end clients. The array is to allow
front-end clients to view details for active locks, but
the definitive state of locks is stored in the lock table.
The lock table uses unnamed storage so that locks are
not persistent across server restarts.

The locking key is a tuple of <table,master,row,column>
where row is the row number (or range of row numbers)
within the table.

If part of a table is already locked then it is necessary
to test for overlapping lock requests. This is a little
tricky since the row may contain ranges. On balance it
was judged better to save bandwidth (and get more
consistent performance) by sending ranges from the
client rather than enumerating the rows to be locked.

If other clients hold locks on the table preventing a
lock request from being granted, the server can grant a
wait lock and arrange for the client to be notified when
the lock becomes available. Wait locks are granted in
the order they are requested. A client can hold several
locks, or wait locks, concurrently on different tables.

From an implementation point of view the use of row
indices works nicely, since the row number is also the
index of the listbox displaying the data. However this
becomes a problem if another front-end client is adding
or removing rows since the row number could be
invalidated. To get around this, add and remove
operations always lock the whole table although it
would be relatively easy to implement a method of
updating the locking row numbers on existing wait
locks.

Locks can be general (e.g. lock the whole table) or more
specific (e.g. lock rows for a particular master value or a
specific row). It is possible to lock an individual cell. If
a lock is requested for a primary key (currently the first
column in a master table) then the entire row is locked.

If a client holds a lock then this can always be made
more specific (e.g. changing a table lock to a row lock
or changing a row lock to a cell lock), but can only be
made more general if this won’t conflict with existing
locks on the table. This scheme allows a user to
highlight a range of rows and proceed to change them,
releasing each row as it is updated, potentially allowing
other users to proceed with their updates.

3.5 Distributed Updates

Front-end clients register their interest in displayed or
cached data and are notified by the back-end server if
the data changes. When the back-end server signals
front-end clients that data has changed the front-end
clients pull the data they need to update their displays
and/or caches.

Change notifications are distributed to all connected
clients using a queued trigger mechanism. The triggers
are run “after idle” so that they are executed
asynchronously with respect to the front-end call that
changed the data.

Note that the central store is always the “reference” - if
it is critical that an application has the latest copy of
the data item it can request a lock on the individual
data item before proceeding

This scheme (push notification followed by pull update)
allows the front-end more control over when and how to
retrieve data. Although the current implementation just
pulls the data when notified, a number of alternative
schemes would be possible:

• if the front-end is iconified then it could
retrieve updates when de-iconified to avoid
retrieving multiple updates of the same data
item

• on high latency networks the front-end could
limit the frequency of updates (e.g. only every
few seconds) and aggregate several update
requests into one “transaction”

• A random delay could be introduced between
updates to avoid “data storms”

For relatively low data change rates (a few per second)
the default scheme works well and none of these
alternatives has been explored.

Responsiveness as perceived by users has proven to be
quite good - even when tunneling through the Internet
via modem connections.

This same queued trigger mechanism is used when
front-end clients are viewing transaction and usage
logs.

4 Implementation Technology

KitView is implemented in Tcl/Tk (via TclKit) using
several popular extensions:

• BWidgets[5]
• mclistbox[6]
• Tequila[7]
• the busy widget from BLT[8]
• the cmdline package from tcllib[9]

4.1 TclKit

KitView uses TclKit – a single file Tcl/Tk interpreter that
includes the Tk library as a loadable extension. It also
includes the Mk4Tcl package that provides bindings to
the MetaKit database library.

Even without the use of MetaKit, TclKit makes the
deployment of Tcl/Tk applications easy.

A separate TclKit interpreter is required for each
supported platform.

4.2 Scripted Documents

Both the back-end server and front-end clients are
deployed as cross-platform Scripted Documents.

A Scripted Document is a single file packaging of
application scripts (in this case Tcl code), compiled
extensions for supported platforms and application
data.

With a little care, Scripted Documents are portable
across any platform supported by TclKit. This is
achieved by including in the Scripted Document any
required compiled extensions/libraries for each platform
to be supported. The Tcl package mechanism is used to
load the appropriate shared library for the current
platform.

KitView stores only static data in the Scripted
Documents and all other data (including user options)
is stored externally in the MetaKit database and
managed via the back-end server.

Scripted Documents contain an internal Virtual File
System (VFS). The TclKit VFS layer intercepts all Tcl
filesystem-related operations, allowing them to operate
on both external files and on the internal filesystem
within the Scripted Document. In KitView, both scripts
and platform specific packages are stored within the
VFS. More information on the Virtual File System can be
found on the MetaKit Wiki[4].

This approach allows scripts to be developed using
traditional tools and packaged unchanged into a
Scripted Document for deployment.

4.3 MetaKit

KitView is based on TclKit 8.4, so as to leverage the
new Mk4tcl object API and features from MetaKit 2.3.
Pre 2.3 database files are converted during use, but
remain in the original format unless the data is
modified and committed. This allows viewing of read-
only data files (such as those on a CD-ROM).

MetaKit uses column-wise storage and memory-mapped
files which, for many applications, provide significant
flexibility and performance benefits. In particular, the
column-wise storage means that brute force searching
of medium sized databases (perhaps up to a million
rows) is surprisingly fast. This certainly makes for easy
deployment – there is no need for specialized database
management systems with server processes and all the
complexity they bring.

In addition, MetaKit supports dynamic reconfiguration
of database schemas. This was particularly useful when
prototyping the data dictionary.

4.4 Tequila

Tequila is a communications mechanism that
implements persistent shared arrays between Tcl
applications. It is part of the MetaKit distribution.

Tequila allows global arrays to be shared transparently
between front-end clients and the back-end server. Any
changes automatically propagate to clients attached to
the array.

Within KitView, Tequila is used when sharing status
arrays (such as the locking information and active
clients). It is also used as a transport mechanism in the
implementation of remote method invocations and
queued triggers.

Tequila is built using Tcl traces and file events, and is a
relatively lightweight client/server communications
mechanism.

4.5 Widgets

The main widget set used in KitView is BWidgets.

Although there are a number of good alternatives,
BWidgets were selected because they offered the most
appropriate trade-off between:

• portability
• small size
• reasonable performance for the class of

problem
• good look and feel on most platforms

In addition, extensive use is made of the mclistbox
multi-column listbox widget when displaying tables.

The blt::busy widget was extracted from the BLT widget
set. A true busy widget such as this is absolutely
essential when implementing a quality client/server
user interaction.

The winico[10] widget is used on Windows, both in the
front-end clients and also to allow the back-end server
to appear in the system tray.

5 Assessment

5.1 Deployment

Perhaps the most unusual feature of KitView is its
deployment technology.

In fact, it could be said that deployment is a dream
compared with more traditional approaches.

A client installation requires only two files (TclKit and
the client Scripted Document). Both are read-only and
can therefore be stored on a network file system. The
TclKit interpreter is the platform specific part, the
Scripted Document is cross-platform.

The only constraint on installation is that both these
files must be stored in the same location. This is a
small price to pay for not having to edit registries, set
file associations, etc. Installation can be as simple as
copying the two files, an un-install as simple as
deleting the files.

Likewise, the back-end server requires only three files
(TclKit, the back-end Scripted Document, and the
MetaKit database file).

Not only are there just a few files, but the file sizes are
almost unbelievably small compared with alternative
technologies.

The contents of Scripted Documents are transparently
compressed when the Scripted Document is created. In
addition, on Linux and Windows TclKit uses the UPX
executable packer which results in very small size (Linux
x86 is around 1Mb, Windows around 800k).

In a typical application using KitView, the file sizes are
• back-end - 65k
• front-end - 280k

Note that the front-end size includes bootstrap code, a
50k splash screen; the BWidget, cmdline, mclistbox and
Tequila packages (all Tcl only); and shared libraries for
the BLT busy widget (Linux, Windows and Solaris) and
winico (Windows).

In addition to the small size, centralized code storage
makes it relatively easy to upgrade clients. For example,
an upgrade of application code involves building a new
back-end server Scripted Document and restarting the
server. When clients are restarted the new code will be
downloaded.

5.2 Performance

Client/server performance has proven to be good – even
when tunneling through the Internet over relatively
slow modem links.

Remote users perceive locking, distributed updates,
and log propagation as almost instantaneous.

In addition, MetaKit has performed flawlessly for the
class of application that KitView has been applied to.
It’s small memory footprint and column-wise data
storage more than makes up for the lack of indices and
sophisticated architecture of more traditional database
products.

The core MetaKit database is geared towards
performance and has been used in a number of very
high-performance contexts. If a performance bottleneck
is encountered, it is expected that it will be due to the
sequential operation of the single back-end server.
There are a number of possible solutions if this does
indeed become a problem - from buying a faster server
to using multiple threads to service requests.

And, as with all scripted applications, there is always
the option of moving time critical functionality into C
or C++.

5.3 Technology
Tcl/Tk has been fundamental to being able to achieve
the results. Within KitView it is used as an
implementation language, extension language, and
communications protocol (via Tequila).

In many ways building KitView involved standing on
the shoulders of giants

3
. Without the foresight of those

who developed Tcl/Tk to its current state, or those who
built extensions such as BWidgets and mclistbox, it
would have been necessary to start from a much
“lower” platform. With these tools it was possible to
concentrate on the architectural and design issues.

Also, KitView was an exercise in portability and cross
platform development. It was built on Linux and
deployed on Linux, Windows and Solaris. Windows
binaries are cross-compiled on Linux using Mingw[11].
VMware[12] is used to test x86 environments and
VNC[13] for remote testing.

5.4 Issues
There are a number of outstanding issues that still need
to be addressed.

In particular, KitView contains no security or
authentication mechanism. Whilst this isn’t a problem
for the original application (which runs on a secure,
private network) it will need to be addressed.

Another implementation issue is whether to use an
object system. Parts of KitView have been prototyped

using [incr Tcl][14]

but this is a little too heavyweight

for the intended purpose. Of course, [incr Tcl] is a fine
tool and heavyweight is a relative term – but adding
45k in size for each supported platform is still
significant given the project objectives.

What KitView needs is a simple Tcl-only OO package
supporting classes, methods, object variables and
simple introspection. At some point the various Tcl-only
options will be investigated, as will extracting parts of
Tcl++[15]

Tracking the Tcl/Tk 8.4 alpha releases had a couple of
nasty consequences. Tcl/Tk 8.4a2 broke backward
compatibility with stubs-enabled packages. Also,
changes to the entry widget broke BWidgets in some
fairly gratuitous ways. Whilst not wishing to “point the
finger”, it was nevertheless quite a pain – but, that’s
what an alpha release is for.

Perhaps the most significant issue was coming up
against the limitations of Tk when building general-
purpose interface tools like KitView. Most can be worked
around but not always satisfactorily.

For example, Tk lacks a scrollable container. This can be
worked around by embedding a window in a canvas, but
this isn’t perfect – there are issues with resizing
embedded windows and scrollbar positioning.

Another missing widget is a native multi-column
listbox. The mclistbox widget does a good job but
resizing and positioning can be a problem when
imbedding in a canvas.

Tk is still the premier cross-platform GUI scripting
language – but it could be much better. What is needed
is a widget set that combines the best features of
BWidgets, [incr Widgets] and Tix[16]; with the
portability and flexibility of BWidgets; and the
performance of Tix and [incr Widgets]. Before this can
happen, Tk needs a standard mega-widget mechanism
and a few additional fundamental widgets (such as
those mentioned above).

6 Futures

KitView lacks security and authentication. Current
thinking is to address this by adding security at the
Tequila level.

Whatever technology is used it must be both cross-
platform and simple (thereby ruling out just about
every piece of middleware known to humanity). KitView
doesn’t need much – just a text based API and remote
method invocation. Some of the alternatives to be
investigated include a home grown solution using
TLS[17], a web based approach using an embedded
TclHttpd[18] server in the back-end, or perhaps

3
 If I have seen further it is by standing on ye shoulders of

 Giants - Isaac Newton

something implemented using a Tcl SOAP binding. Time
will tell.

A feature that is sure to be investigated is incremental
booting. Rather than have an application specific client
containing the necessary libraries, a generic client
would contain only enough information to contact a
back-end server. All the necessary parts would be
downloaded and persistently cached locally, with
mechanisms to update the cache if application
components change. This would make deployment even
easier than the present.

Although there is currently only one visual
representation, it would be feasible to generate
multiple interfaces depending on factors such as the
type of display or level of experience of the operator.

The approach of storing a relatively high level UI
description in the MetaKit database has merit - maybe
even pre-parsed into XML. MetaKit would be particular
suited to this application, supporting both hierarchical
data and dynamic schemas.

This would not be a screen painter UI development tool
but rather much higher level. Ideally, the definition
would be sufficiently abstracted so that over time the
UI could be improved by tuning the run-time tools
without the need to change the UI definition.

Note that the UI need not be restricted to graphical/
bitmap displays - a design goal is that the interface
should be mappable to character displays, PDA displays
and web interfaces.

The other future is to track MetaKit development. This
will include using the optional SQL layer for defining
rules.

7 Conclusions

KitView is a very useful addition to the suite of Tcl
packages and tools.

It is of particular value in typical data management
situations, automating the generation of user interfaces
and allowing the developer to concentrate on the
application (or domain) specific functions.

The approach of separating the definition and visual
representation will allow adoption of new UI techniques
and different frameworks without the need to develop
to a “least common denominator”. Existing applications
will adapt to new interfaces without the need to be
redeveloped. This approach gives an application a
degree of technological independence – and to some
extent it becomes future proof.

The organisation funding the development of the
commercial project views the use of Tcl/Tk, Tclkit and
KitView as a strategic advantage because it is reliable,

allows for true rapid prototyping and requires minimal
installation.

The development model used for KitView is also
noteworthy – developed as part of a proprietary product
and then generalized for release as Open Source
software. The Open Source community gets the benefit
of software that might not otherwise be built. The
company funding the original development benefits
from broader use and support of the package. And the
developers get to pay the bills.

And finally, KitView has confirmed the validity and
benefits of extending core compiled functionality by
scripting. KitView enhances MetaKit with distributed
access, locking, transactions (sort of) and logging – all
without writing a line of C code - and still obtains good
performance.

8 Acknowledgements

I would like to acknowledge the groundbreaking work of
Jean-Claude Wippler in producing MetaKit, TclKit,
Scripted Documents and Tequila. Also, thanks are due to
Larry Blasingame for his support and encouragement,
and Brad Entwistle for his assistance in preparing this
paper.

References

[1] Wippler, Jean-Claude. The MetaKit Database
http://www.equi4.com/metakit/

[2] Wippler, Jean-Claude. Scripted Documents.
Proceedings of the Seventh Annual Tcl/Tk Workshop.
Feb 2000.
http://www.equi4.com/jcw/scripdoc.html

[3] Wippler, Jean-Claude. TclKit
http://www.equi4.com/tclkit/

[4] The MetaKit Wiki
http://www.equi4.com/metakit/wiki.cgi/114.html

Software mentioned in this paper
[5] The BWidget Toolkit

http://sourceforge.net/projects/tcllib/
[6] mclistbox http://purl.oclc.org/net/oakley/tcl/mclistbox/
[7] Tequila http://www.equi4.com/tequila/
[8] The BLT Toolkit http://sourceforge.net/projects/blt/
[9] tcllib http://sourceforge.net/projects/tcllib/
[10] Winico http://ftp.bjg.de/pub/tcltk/winico31.README/
[11] Mingw http://www.mingw.org/
[12] VMware http://www.vmware.com/
[13] VNC http://www.uk.research.att.com/vnc/
[14] [incr Tcl] http://tcltk.com/itcl/
[15] Tcl++ http://www.sensus.org/tcl/
[16] Tix http://tix.sourceforge.net/
[17] TLS http://sourceforge.net/projects/tls/
[18] TclHttpd http://sourceforge.net/projects/tclhttpd/

)

